matmul_v2_op.cc 17.9 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
16

S
ShenLiang 已提交
17 18 19
#include <string>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
23

S
ShenLiang 已提交
24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33
static framework::DDim GetDimForInput(const framework::InferShapeContext& ctx,
                                      const std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);

34 35
  PADDLE_ENFORCE_GT(dim.size(),
                    0,
36 37 38 39 40 41 42 43
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));

  // if mkldnn reshape+transpose+matmul fuse activated
  if (!shape.empty() && !axis.empty()) {
    PADDLE_ENFORCE_GE(
44 45
        shape.size(),
        2,
46 47 48 49 50
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_LE(
51 52
        shape.size(),
        4,
53 54 55 56 57
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_EQ(
58 59
        shape.size(),
        axis.size(),
60 61 62
        platform::errors::InvalidArgument(
            "Ranks of shape_%s and axis_%s attributes of MatMulOp "
            "must be equal.",
63 64
            input_name,
            input_name));
65 66

    int num_negative = std::count(shape.begin(), shape.end(), -1);
67 68
    PADDLE_ENFORCE_LE(num_negative,
                      1,
69 70 71
                      platform::errors::InvalidArgument(
                          "The max number of -1 in fused_reshape_%s is 1 "
                          "but received %d.",
72 73
                          input_name,
                          num_negative));
74 75 76 77 78

    auto it_zero = std::find(shape.begin(), shape.end(), 0);
    if (it_zero != shape.end()) {
      for (uint64_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 0) {
79 80
          PADDLE_ENFORCE_LT(i,
                            dim.size(),
81 82 83 84
                            platform::errors::InvalidArgument(
                                "The index of 0 in fused_reshape_%s ",
                                "should be less than output dim size, ",
                                "but the index is %d and output dim size is %d",
85 86 87
                                input_name,
                                i,
                                dim.size()));
88 89 90 91 92 93 94 95 96 97
          shape[i] = dim.at(i);
        }
      }
    }

    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

S
ShenLiang 已提交
98 99 100 101 102 103 104 105 106 107
class MatMulV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
    bool trans_x = ctx->Attrs().Get<bool>("trans_x");
    bool trans_y = ctx->Attrs().Get<bool>("trans_y");

108 109
    std::vector<int64_t> dims_x = phi::vectorize(GetDimForInput(*ctx, "X"));
    std::vector<int64_t> dims_y = phi::vectorize(GetDimForInput(*ctx, "Y"));
S
ShenLiang 已提交
110 111
    auto ndims_x = dims_x.size();
    auto ndims_y = dims_y.size();
112 113
    PADDLE_ENFORCE_GT(ndims_x,
                      0,
114 115 116
                      platform::errors::InvalidArgument(
                          "The Input(X) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
117 118
    PADDLE_ENFORCE_GT(ndims_y,
                      0,
119 120 121
                      platform::errors::InvalidArgument(
                          "The Input(Y) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
S
ShenLiang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    bool x_broadcasted = false, y_broadcasted = false;
    if (ndims_x == 1) {
      dims_x.insert(dims_x.begin(), 1);
      ndims_x = 2;
      x_broadcasted = true;
    }

    if (ndims_y == 1) {
      dims_y.push_back(1);
      ndims_y = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = dims_x[ndims_x - 1];
    } else {
      M = dims_x[ndims_x - 2];
    }
    if (trans_y) {
      N = dims_y[ndims_y - 2];
    } else {
      N = dims_y[ndims_y - 1];
    }

    std::vector<int64_t> new_dims;
149
    if (ndims_x > ndims_y) {
S
ShenLiang 已提交
150
      new_dims.assign(dims_x.begin(), dims_x.end() - 2);
151
    } else if (ndims_x < ndims_y) {
S
ShenLiang 已提交
152
      new_dims.assign(dims_y.begin(), dims_y.end() - 2);
153 154 155 156 157
    } else {
      new_dims.reserve(ndims_x);
      for (size_t i = 0; i < ndims_x - 2; ++i) {
        new_dims.push_back(std::max(dims_x[i], dims_y[i]));
      }
S
ShenLiang 已提交
158 159 160 161 162 163 164 165 166 167 168
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

169
    auto ddim_out = phi::make_ddim(new_dims);
170 171 172 173 174 175 176 177

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul_v2+transpose+reshape fuse activated
    auto reshape_out = ctx->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        ctx->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
178
      ddim_out = ddim_out.transpose(transpose_out).reshape(reshape_out);
179 180 181
    }
#endif

182 183
    ctx->SetOutputDim("Out", ddim_out);
    ctx->ShareLoD("X", "Out");
S
ShenLiang 已提交
184 185 186 187 188
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
189
    auto input_data_type =
190
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
191 192 193

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
194 195
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
196 197 198 199 200
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
201 202 203
  }

  framework::OpKernelType GetKernelTypeForVar(
204 205
      const std::string& var_name,
      const framework::Tensor& tensor,
206 207 208
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
209
      return framework::OpKernelType(
210 211
          framework::TransToProtoVarType(tensor.dtype()),
          tensor.place(),
212
          tensor.layout());
213
    } else {
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#ifdef PADDLE_WITH_MKLDNN
      // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
      // op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
230 231
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), tensor.layout());
232
    }
S
ShenLiang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  }
};

class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "tensor of shape (d0, d1 ... M, K)");
    AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
    AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
    AddAttr<bool>("trans_x",
                  "Set true to transpose the last two dimensions of X before "
                  "doing multiplication")
        .SetDefault(false);
    AddAttr<bool>("trans_y",
                  "Set true to transpose the last two dimensions of Y before "
                  "doing multiplication")
        .SetDefault(false);
250 251 252 253 254 255 256 257 258 259 260 261
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN matmul_v2_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN matmul_v2_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
        .SetDefault({})
        .AsExtra();
262 263
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
264 265
        .SetDefault(false)
        .AsExtra();
266 267 268 269
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
270 271
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
        .SetDefault({})
        .AsExtra();
S
ShenLiang 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301
    AddComment(
        R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
  }
};

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
chentianyu03 已提交
302 303
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
304 305 306 307 308
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
309 310
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
311 312 313 314 315
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
316 317 318
  }

  framework::OpKernelType GetKernelTypeForVar(
319 320
      const std::string& var_name,
      const framework::Tensor& tensor,
C
chentianyu03 已提交
321 322 323
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
324
      return framework::OpKernelType(
325 326
          framework::TransToProtoVarType(tensor.dtype()),
          tensor.place(),
327
          tensor.layout());
C
chentianyu03 已提交
328
    } else {
329 330
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), tensor.layout());
C
chentianyu03 已提交
331 332
    }
  }
S
ShenLiang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wawltor 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
class MatMulV2OpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    op->SetOutput("DX",
                  ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    op->SetOutput("DY",
                  ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    op->SetAttrMap(this->Attrs());
  }
};
405 406 407 408 409 410
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    OP_INOUT_CHECK(
        context->HasInput("X"), "Input", "X", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("Y"), "Input", "Y", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DOut"), "Input", "DOut", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDX"), "Input", "DDX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDY"), "Input", "DDY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DX"), "Input", "D_DX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DY"), "Input", "D_DY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DDOut"),
                   "Input",
                   "D_DDOut",
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
                   "matmul_v2_triple_grad");

    if (context->HasOutput("D_X_out")) {
      context->ShareDim("X", "D_X_out");
    }
    if (context->HasOutput("D_Y_out")) {
      context->ShareDim("Y", "D_Y_out");
    }
    if (context->HasOutput("D_DOut_out")) {
      context->ShareDim("DOut", "D_DOut_out");
    }
    if (context->HasOutput("D_DDX_out")) {
      context->ShareDim("X", "D_DDX_out");
    }
    if (context->HasOutput("D_DDY_out")) {
      context->ShareDim("Y", "D_DDY_out");
    }
  }
};

template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_triple_grad");

    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DY", this->OutputGrad("DY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    // set outputs
    op->SetOutput("D_X_out", this->InputGrad("X"));
    op->SetOutput("D_Y_out", this->InputGrad("Y"));
    op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
    op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
    op->SetOutput("D_DDY_out", this->InputGrad("DDY"));

    op->SetAttrMap(this->Attrs());
  }
};
S
ShenLiang 已提交
477 478 479 480
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
481 482 483
REGISTER_OPERATOR(matmul_v2,
                  ops::MatMulV2Op,
                  ops::MatMulV2OpMaker,
S
ShenLiang 已提交
484 485 486
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

487 488
DECLARE_INFER_SHAPE_FUNCTOR(matmul_v2_grad,
                            MatMulV2GradInferShapeFunctor,
489
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
490 491
REGISTER_OPERATOR(matmul_v2_grad,
                  ops::MatMulV2OpGrad,
W
wawltor 已提交
492
                  ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
493 494
                  ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>,
                  MatMulV2GradInferShapeFunctor);
W
wawltor 已提交
495

496 497
REGISTER_OPERATOR(matmul_v2_grad_grad,
                  ops::MatMulV2OpDoubleGrad,
498 499 500 501
                  ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);