matmul_v2_op.cc 6.3 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
#include <string>
#include <vector>

namespace paddle {
namespace operators {

class MatMulV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
    bool trans_x = ctx->Attrs().Get<bool>("trans_x");
    bool trans_y = ctx->Attrs().Get<bool>("trans_y");

    std::vector<int64_t> dims_x =
        paddle::framework::vectorize(ctx->GetInputDim("X"));
    std::vector<int64_t> dims_y =
        paddle::framework::vectorize(ctx->GetInputDim("Y"));
    auto ndims_x = dims_x.size();
    auto ndims_y = dims_y.size();

    bool x_broadcasted = false, y_broadcasted = false;
    if (ndims_x == 1) {
      dims_x.insert(dims_x.begin(), 1);
      ndims_x = 2;
      x_broadcasted = true;
    }

    if (ndims_y == 1) {
      dims_y.push_back(1);
      ndims_y = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = dims_x[ndims_x - 1];
    } else {
      M = dims_x[ndims_x - 2];
    }
    if (trans_y) {
      N = dims_y[ndims_y - 2];
    } else {
      N = dims_y[ndims_y - 1];
    }

    std::vector<int64_t> new_dims;
    if (ndims_x >= ndims_y) {
      new_dims.assign(dims_x.begin(), dims_x.end() - 2);
    } else {
      new_dims.assign(dims_y.begin(), dims_y.end() - 2);
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

    auto out_dims = framework::make_ddim(new_dims);
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /* --> */ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "tensor of shape (d0, d1 ... M, K)");
    AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
    AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
    AddAttr<bool>("trans_x",
                  "Set true to transpose the last two dimensions of X before "
                  "doing multiplication")
        .SetDefault(false);
    AddAttr<bool>("trans_y",
                  "Set true to transpose the last two dimensions of Y before "
                  "doing multiplication")
        .SetDefault(false);
    AddComment(
        R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
  }
};

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul_v2");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker,
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad);

REGISTER_OP_CPU_KERNEL(
    matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
171 172 173 174 175
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::complex64>,
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::complex128>);
S
ShenLiang 已提交
176 177 178 179

REGISTER_OP_CPU_KERNEL(
    matmul_v2_grad,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, float>,
180 181 182 183 184
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
                            paddle::platform::complex64>,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
                            paddle::platform::complex128>);