test_rnn_decode_api.py 24.6 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
G
Guo Sheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import random
G
Guo Sheng 已提交
16
import unittest
17

18
import numpy as np
G
Guo Sheng 已提交
19

20
import paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
24 25 26
import paddle.nn as nn
from paddle import Model, set_device
from paddle.fluid.dygraph import Layer
G
Guo Sheng 已提交
27
from paddle.fluid.executor import Executor
28
from paddle.fluid.framework import _test_eager_guard
29 30
from paddle.nn import BeamSearchDecoder, dynamic_decode
from paddle.static import InputSpec as Input
31

32 33
paddle.enable_static()

G
Guo Sheng 已提交
34

35
class EncoderCell(layers.RNNCell):
36
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
G
Guo Sheng 已提交
37 38 39
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
40 41 42
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
43 44 45 46 47

    def call(self, step_input, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](step_input, states[i])
48 49 50 51 52
            step_input = (
                layers.dropout(out, self.dropout_prob)
                if self.dropout_prob > 0
                else out
            )
G
Guo Sheng 已提交
53 54 55 56 57 58 59 60
            new_states.append(new_state)
        return step_input, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


61
class DecoderCell(layers.RNNCell):
62
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
G
Guo Sheng 已提交
63 64 65
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
66 67 68
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
69 70

    def attention(self, hidden, encoder_output, encoder_padding_mask):
71 72 73
        query = layers.fc(
            hidden, size=encoder_output.shape[-1], bias_attr=False
        )
K
kangguangli 已提交
74
        attn_scores = paddle.matmul(
75 76
            layers.unsqueeze(query, [1]), encoder_output, transpose_y=True
        )
G
Guo Sheng 已提交
77
        if encoder_padding_mask is not None:
78
            attn_scores = paddle.add(attn_scores, encoder_padding_mask)
79
        attn_scores = paddle.nn.functional.softmax(attn_scores)
80
        attn_out = paddle.squeeze(
K
kangguangli 已提交
81
            paddle.matmul(attn_scores, encoder_output), [1]
82
        )
G
Guo Sheng 已提交
83 84 85 86
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
        return attn_out

87 88 89
    def call(
        self, step_input, states, encoder_output, encoder_padding_mask=None
    ):
G
Guo Sheng 已提交
90 91 92 93 94
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i in range(self.num_layers):
            out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
95 96 97 98 99
            step_input = (
                layers.dropout(out, self.dropout_prob)
                if self.dropout_prob > 0
                else out
            )
G
Guo Sheng 已提交
100 101 102 103 104
            new_lstm_states.append(new_lstm_state)
        out = self.attention(step_input, encoder_output, encoder_padding_mask)
        return out, [new_lstm_states, out]


105
class Encoder:
106
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
107
        self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
G
Guo Sheng 已提交
108

109 110 111 112 113
    def __call__(self, src_emb, src_sequence_length):
        encoder_output, encoder_final_state = layers.rnn(
            cell=self.encoder_cell,
            inputs=src_emb,
            sequence_length=src_sequence_length,
114 115
            is_reverse=False,
        )
116 117 118
        return encoder_output, encoder_final_state


119
class Decoder:
120 121 122 123 124 125 126 127
    def __init__(
        self,
        num_layers,
        hidden_size,
        dropout_prob,
        decoding_strategy="infer_sample",
        max_decoding_length=20,
    ):
128 129
        self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
        self.decoding_strategy = decoding_strategy
130 131 132 133 134 135 136 137 138 139 140 141 142
        self.max_decoding_length = (
            None
            if (self.decoding_strategy == "train_greedy")
            else max_decoding_length
        )

    def __call__(
        self,
        decoder_initial_states,
        encoder_output,
        encoder_padding_mask,
        **kwargs
    ):
143
        output_layer = kwargs.pop("output_layer", None)
144 145 146 147 148 149 150 151 152 153 154

        beam_size = kwargs.get("beam_size", 4)
        encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_output, beam_size
        )
        encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_padding_mask, beam_size
        )
        decoder = BeamSearchDecoder(
            cell=self.decoder_cell, output_fn=output_layer, **kwargs
        )
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        (
            decoder_output,
            decoder_final_state,
            dec_seq_lengths,
        ) = layers.dynamic_decode(
            decoder,
            inits=decoder_initial_states,
            max_step_num=self.max_decoding_length,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask,
            impute_finished=False  # for test coverage
            if self.decoding_strategy == "beam_search"
            else True,
            is_test=True if self.decoding_strategy == "beam_search" else False,
            return_length=True,
        )
172 173 174
        return decoder_output, decoder_final_state, dec_seq_lengths


175
class Seq2SeqModel:
176 177
    """Seq2Seq model: RNN encoder-decoder with attention"""

178 179 180 181 182 183 184 185 186 187 188 189 190
    def __init__(
        self,
        num_layers,
        hidden_size,
        dropout_prob,
        src_vocab_size,
        trg_vocab_size,
        start_token,
        end_token,
        decoding_strategy="infer_sample",
        max_decoding_length=20,
        beam_size=4,
    ):
191
        self.start_token, self.end_token = start_token, end_token
192 193 194 195
        self.max_decoding_length, self.beam_size = (
            max_decoding_length,
            beam_size,
        )
J
Jiaqi Liu 已提交
196 197 198
        self.src_embeder = paddle.nn.Embedding(
            src_vocab_size,
            hidden_size,
199 200
            weight_attr=fluid.ParamAttr(name="source_embedding"),
        )
J
Jiaqi Liu 已提交
201 202 203
        self.trg_embeder = paddle.nn.Embedding(
            trg_vocab_size,
            hidden_size,
204 205
            weight_attr=fluid.ParamAttr(name="target_embedding"),
        )
206
        self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
207 208 209 210 211 212 213 214 215 216 217 218 219 220
        self.decoder = Decoder(
            num_layers,
            hidden_size,
            dropout_prob,
            decoding_strategy,
            max_decoding_length,
        )
        self.output_layer = lambda x: layers.fc(
            x,
            size=trg_vocab_size,
            num_flatten_dims=len(x.shape) - 1,
            param_attr=fluid.ParamAttr(),
            bias_attr=False,
        )
G
Guo Sheng 已提交
221

222 223 224
    def __call__(self, src, src_length, trg=None, trg_length=None):
        # encoder
        encoder_output, encoder_final_state = self.encoder(
225 226
            self.src_embeder(src), src_length
        )
G
Guo Sheng 已提交
227 228

        decoder_initial_states = [
229 230
            encoder_final_state,
            self.decoder.decoder_cell.get_initial_states(
231 232
                batch_ref=encoder_output, shape=[encoder_output.shape[-1]]
            ),
G
Guo Sheng 已提交
233
        ]
234
        src_mask = layers.sequence_mask(
2
201716010711 已提交
235
            src_length, maxlen=paddle.shape(src)[1], dtype="float32"
236
        )
237 238
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
G
Guo Sheng 已提交
239

240
        # decoder
241
        decoder_kwargs = (
242
            {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                "inputs": self.trg_embeder(trg),
                "sequence_length": trg_length,
            }
            if self.decoder.decoding_strategy == "train_greedy"
            else (
                {
                    "embedding_fn": self.trg_embeder,
                    "beam_size": self.beam_size,
                    "start_token": self.start_token,
                    "end_token": self.end_token,
                }
                if self.decoder.decoding_strategy == "beam_search"
                else {
                    "embedding_fn": self.trg_embeder,
                    "start_tokens": layers.fill_constant_batch_size_like(
                        input=encoder_output,
                        shape=[-1],
                        dtype=src.dtype,
                        value=self.start_token,
                    ),
                    "end_token": self.end_token,
                }
            )
        )
267 268
        decoder_kwargs["output_layer"] = self.output_layer

269 270 271 272 273 274
        (decoder_output, decoder_final_state, dec_seq_lengths) = self.decoder(
            decoder_initial_states,
            encoder_output,
            encoder_padding_mask,
            **decoder_kwargs
        )
275 276
        if self.decoder.decoding_strategy == "beam_search":  # for inference
            return decoder_output
277 278 279 280 281
        logits, samples, sample_length = (
            decoder_output.cell_outputs,
            decoder_output.sample_ids,
            dec_seq_lengths,
        )
282
        probs = paddle.nn.functional.softmax(logits)
283 284 285
        return probs, samples, sample_length


286
class PolicyGradient:
287 288 289 290 291 292 293 294 295
    """policy gradient"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, act_prob, action, reward, length=None):
        """
        update policy model self.model with policy gradient algorithm
        """
296
        self.reward = paddle.static.py_func(
297 298
            func=reward_func, x=[action, length], out=reward
        )
299 300 301
        neg_log_prob = paddle.nn.functional.cross_entropy(
            act_prob, action, reduction='none', use_softmax=False
        )
302
        cost = neg_log_prob * reward
303
        cost = (
304
            (paddle.sum(cost) / paddle.sum(length))
305
            if length is not None
306
            else paddle.mean(cost)
307
        )
308 309 310 311 312 313 314 315
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(cost)
        return cost


def reward_func(samples, sample_length):
    """toy reward"""

316
    def discount_reward(reward, sequence_length, discount=1.0):
317 318
        return discount_reward_1d(reward, sequence_length, discount)

319
    def discount_reward_1d(reward, sequence_length, discount=1.0, dtype=None):
320 321
        if sequence_length is None:
            raise ValueError(
322 323
                'sequence_length must not be `None` for 1D reward.'
            )
324 325 326 327 328
        reward = np.array(reward)
        sequence_length = np.array(sequence_length)
        batch_size = reward.shape[0]
        max_seq_length = np.max(sequence_length)
        dtype = dtype or reward.dtype
329
        if discount == 1.0:
330
            dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
G
Guo Sheng 已提交
331
        else:
332
            steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
333 334 335
            mask = np.asarray(
                steps < (sequence_length - 1)[:, None], dtype=dtype
            )
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            # Make each row = [discount, ..., discount, 1, ..., 1]
            dmat = mask * discount + (1 - mask)
            dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
        disc_reward = dmat * reward[:, None]
        disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
        return disc_reward

    def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
        sequence = np.array(sequence)
        sequence_length = np.array(sequence_length)
        rank = sequence.ndim
        if rank < 2:
            raise ValueError("`sequence` must be 2D or higher order.")
        batch_size = sequence.shape[0]
        max_time = sequence.shape[1]
        dtype = dtype or sequence.dtype
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        steps = np.tile(np.arange(max_time), [batch_size, 1])
        mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
        for _ in range(2, rank):
            mask = np.expand_dims(mask, -1)
        sequence = sequence * mask
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        return sequence

    samples = np.array(samples)
    sample_length = np.array(sample_length)
    # length reward
    reward = (5 - np.abs(sample_length - 5)).astype("float32")
    # repeat punishment to trapped into local minima getting all same words
    # beam search to get more than one sample may also can avoid this
    for i in range(reward.shape[0]):
370 371 372 373 374 375 376 377 378
        reward[i] += (
            -10
            if sample_length[i] > 1
            and np.all(samples[i][: sample_length[i] - 1] == samples[i][0])
            else 0
        )
    return discount_reward(reward, sample_length, discount=1.0).astype(
        "float32"
    )
379 380


381
class MLE:
382 383 384 385 386 387
    """teacher-forcing MLE training"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, probs, label, weight=None, length=None):
388 389 390 391 392 393 394
        loss = paddle.nn.functional.cross_entropy(
            input=probs,
            label=label,
            soft_label=False,
            reduction='none',
            use_softmax=False,
        )
2
201716010711 已提交
395
        max_seq_len = paddle.shape(probs)[1]
396 397
        mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
        loss = loss * mask
398
        loss = paddle.mean(loss, axis=[0])
399
        loss = paddle.sum(loss)
400 401 402 403 404
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(loss)
        return loss


405
class SeqPGAgent:
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    def __init__(
        self,
        model_cls,
        alg_cls=PolicyGradient,
        model_hparams={},
        alg_hparams={},
        executor=None,
        main_program=None,
        startup_program=None,
        seed=None,
    ):
        self.main_program = (
            fluid.Program() if main_program is None else main_program
        )
        self.startup_program = (
            fluid.Program() if startup_program is None else startup_program
        )
423 424 425 426 427 428 429 430 431
        if seed is not None:
            self.main_program.random_seed = seed
            self.startup_program.random_seed = seed
        self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
        self.executor = executor

    def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
        with fluid.program_guard(self.main_program, self.startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
432 433 434
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64"
            )
435 436
            # only for teacher-forcing MLE training
            target = fluid.data(name="trg", shape=[None, None], dtype="int64")
437 438 439 440 441 442
            target_length = fluid.data(
                name="trg_sequence_length", shape=[None], dtype="int64"
            )
            label = fluid.data(
                name="label", shape=[None, None, 1], dtype="int64"
            )
443 444 445
            self.model = model_cls(**model_hparams)
            self.alg = alg_cls(**alg_hparams)
            self.probs, self.samples, self.sample_length = self.model(
446 447
                source, source_length, target, target_length
            )
448
            self.samples.stop_gradient = True
449
            self.reward = fluid.data(
450
                name="reward",
451
                shape=[None, None],  # batch_size, seq_len
452 453
                dtype=self.probs.dtype,
            )
454
            self.samples.stop_gradient = False
455 456 457
            self.cost = self.alg.learn(
                self.probs, self.samples, self.reward, self.sample_length
            )
458 459 460 461

        # to define the same parameters between different programs
        self.pred_program = self.main_program._prune_with_input(
            [source.name, source_length.name],
462 463
            [self.probs, self.samples, self.sample_length],
        )
464 465 466 467 468

    def predict(self, feed_dict):
        samples, sample_length = self.executor.run(
            self.pred_program,
            feed=feed_dict,
469 470
            fetch_list=[self.samples, self.sample_length],
        )
471 472 473
        return samples, sample_length

    def learn(self, feed_dict, fetch_list):
474 475 476
        results = self.executor.run(
            self.main_program, feed=feed_dict, fetch_list=fetch_list
        )
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        return results


class TestDynamicDecode(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.model_hparams = {
            "num_layers": 2,
            "hidden_size": 32,
            "dropout_prob": 0.1,
            "src_vocab_size": 100,
            "trg_vocab_size": 100,
            "start_token": 0,
            "end_token": 1,
            "decoding_strategy": "infer_greedy",
492
            "max_decoding_length": 10,
493 494 495 496 497 498 499
        }

        self.iter_num = iter_num = 2
        self.batch_size = batch_size = 4
        src_seq_len = 10
        trg_seq_len = 12
        self.data = {
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
            "src": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, src_seq_len),
            ).astype("int64"),
            "src_sequence_length": np.random.randint(
                1, src_seq_len, (iter_num * batch_size,)
            ).astype("int64"),
            "trg": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len),
            ).astype("int64"),
            "trg_sequence_length": np.random.randint(
                1, trg_seq_len, (iter_num * batch_size,)
            ).astype("int64"),
            "label": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len, 1),
            ).astype("int64"),
521 522
        }

523 524 525 526 527
        place = (
            core.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else core.CPUPlace()
        )
528 529 530
        self.exe = Executor(place)

    def test_beam_search_infer(self):
531 532
        paddle.set_default_dtype("float32")
        paddle.enable_static()
533 534 535 536 537
        self.model_hparams["decoding_strategy"] = "beam_search"
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
538 539 540
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64"
            )
541 542 543 544 545 546 547 548
            model = Seq2SeqModel(**self.model_hparams)
            output = model(source, source_length)

        self.exe.run(startup_program)
        for iter_idx in range(self.iter_num):
            trans_ids = self.exe.run(
                program=main_program,
                feed={
549 550 551 552 553 554 555 556 557 558 559
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
560
                },
561 562
                fetch_list=[output],
            )[0]
G
Guo Sheng 已提交
563 564


565 566 567 568 569 570 571 572 573
class ModuleApiTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls._random_seed = 123
        np.random.seed(cls._random_seed)
        random.seed(cls._random_seed)

574
        cls.model_cls = type(
575 576 577
            cls.__name__ + "Model",
            (Layer,),
            {
578
                "__init__": cls.model_init_wrapper(cls.model_init),
579 580 581
                "forward": cls.model_forward,
            },
        )
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    @classmethod
    def tearDownClass(cls):
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

    @staticmethod
    def model_init_wrapper(func):
        def __impl__(self, *args, **kwargs):
            Layer.__init__(self)
            func(self, *args, **kwargs)

        return __impl__

    @staticmethod
    def model_init(model, *args, **kwargs):
        raise NotImplementedError(
599 600
            "model_init acts as `Model.__init__`, thus must implement it"
        )
601 602 603 604 605 606 607 608

    @staticmethod
    def model_forward(model, *args, **kwargs):
        return model.module(*args, **kwargs)

    def make_inputs(self):
        # TODO(guosheng): add default from `self.inputs`
        raise NotImplementedError(
609 610
            "model_inputs makes inputs for model, thus must implement it"
        )
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

    def setUp(self):
        """
        For the model which wraps the module to be tested:
            Set input data by `self.inputs` list
            Set init argument values by `self.attrs` list/dict
            Set model parameter values by `self.param_states` dict
            Set expected output data by `self.outputs` list
        We can create a model instance and run once with these.
        """
        self.inputs = []
        self.attrs = {}
        self.param_states = {}
        self.outputs = []

    def _calc_output(self, place, mode="test", dygraph=True):
        if dygraph:
            fluid.enable_dygraph(place)
        else:
            fluid.disable_dygraph()
C
cnn 已提交
631
        gen = paddle.seed(self._random_seed)
632 633 634
        paddle.framework.random._manual_program_seed(self._random_seed)
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
635 636 637 638 639
            layer = (
                self.model_cls(**self.attrs)
                if isinstance(self.attrs, dict)
                else self.model_cls(*self.attrs)
            )
640 641 642 643
            model = Model(layer, inputs=self.make_inputs())
            model.prepare()
            if self.param_states:
                model.load(self.param_states, optim_state=None)
644
            return model.predict_batch(self.inputs)
645 646 647 648 649 650

    def check_output_with_place(self, place, mode="test"):
        dygraph_output = self._calc_output(place, mode, dygraph=True)
        stgraph_output = self._calc_output(place, mode, dygraph=False)
        expect_output = getattr(self, "outputs", None)
        for actual_t, expect_t in zip(dygraph_output, stgraph_output):
651
            np.testing.assert_allclose(actual_t, expect_t, rtol=1e-05, atol=0)
652 653
        if expect_output:
            for actual_t, expect_t in zip(dygraph_output, expect_output):
654 655 656
                np.testing.assert_allclose(
                    actual_t, expect_t, rtol=1e-05, atol=0
                )
657 658 659 660 661 662 663 664 665 666 667 668 669 670

    def check_output(self):
        devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
        for device in devices:
            place = set_device(device)
            self.check_output_with_place(place)


class TestBeamSearch(ModuleApiTest):
    def setUp(self):
        paddle.set_default_dtype("float64")
        shape = (8, 32)
        self.inputs = [
            np.random.random(shape).astype("float64"),
671
            np.random.random(shape).astype("float64"),
672 673 674 675 676 677 678 679 680 681
        ]
        self.outputs = None
        self.attrs = {
            "vocab_size": 100,
            "embed_dim": 32,
            "hidden_size": 32,
        }
        self.param_states = {}

    @staticmethod
682 683 684 685 686 687 688 689 690 691 692 693 694
    def model_init(
        self,
        vocab_size,
        embed_dim,
        hidden_size,
        bos_id=0,
        eos_id=1,
        beam_size=4,
        max_step_num=20,
    ):
        embedder = paddle.fluid.dygraph.Embedding(
            size=[vocab_size, embed_dim], dtype="float64"
        )
695 696 697
        output_layer = nn.Linear(hidden_size, vocab_size)
        cell = nn.LSTMCell(embed_dim, hidden_size)
        self.max_step_num = max_step_num
698 699 700 701 702 703 704 705
        self.beam_search_decoder = BeamSearchDecoder(
            cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=embedder,
            output_fn=output_layer,
        )
706 707 708

    @staticmethod
    def model_forward(model, init_hidden, init_cell):
709 710 711 712 713 714 715
        return dynamic_decode(
            model.beam_search_decoder,
            [init_hidden, init_cell],
            max_step_num=model.max_step_num,
            impute_finished=True,
            is_test=True,
        )[0]
716 717 718 719 720 721 722 723

    def make_inputs(self):
        inputs = [
            Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
            Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
        ]
        return inputs

724 725 726
    def func_check_output(self):
        self.setUp()
        self.make_inputs()
727 728
        self.check_output()

729 730 731 732 733
    def test_check_output(self):
        with _test_eager_guard():
            self.func_check_output()
        self.func_check_output()

734

G
Guo Sheng 已提交
735 736
if __name__ == '__main__':
    unittest.main()