Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
518f9d81
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
518f9d81
编写于
12月 02, 2022
作者:
C
cyber-pioneer
提交者:
GitHub
12月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move fluid.layer.py_func to paddle.static.nn.common.py_func (#48482)
上级
c34812ac
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
335 addition
and
332 deletion
+335
-332
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-322
python/paddle/fluid/tests/unittests/test_py_func_op.py
python/paddle/fluid/tests/unittests/test_py_func_op.py
+6
-6
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
+1
-1
python/paddle/static/__init__.py
python/paddle/static/__init__.py
+3
-2
python/paddle/static/nn/__init__.py
python/paddle/static/nn/__init__.py
+1
-1
python/paddle/static/nn/common.py
python/paddle/static/nn/common.py
+324
-0
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
518f9d81
...
...
@@ -113,7 +113,6 @@ __all__ = [
'merge_selected_rows'
,
'get_tensor_from_selected_rows'
,
'temporal_shift'
,
'py_func'
,
'continuous_value_model'
,
'unfold'
,
'deformable_roi_pooling'
,
...
...
@@ -6635,327 +6634,6 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
)
class
PyFuncRegistry
:
_register_funcs
=
[]
def
__init__
(
self
,
func
):
if
func
is
None
or
not
callable
(
func
):
raise
TypeError
(
'func must be a Python function'
)
self
.
_func
=
func
# find named args using reflection
args
=
inspect
.
getfullargspec
(
self
.
_func
)
if
len
(
args
[
0
])
==
0
and
args
[
1
]
is
None
and
args
[
2
]
is
None
:
# Function with no inputs
self
.
_named_args
=
None
else
:
self
.
_named_args
=
args
[
0
]
self
.
_id
=
core
.
_append_python_callable_object_and_return_id
(
self
)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry
.
_register_funcs
.
append
(
self
)
@
classmethod
def
registered_func
(
cls
,
idx
):
return
cls
.
_register_funcs
[
idx
].
_func
@
classmethod
def
registered_func_num
(
cls
):
return
len
(
cls
.
_register_funcs
)
@
property
def
id
(
self
):
return
self
.
_id
def
__call__
(
self
,
*
args
):
if
self
.
_named_args
is
None
:
func_ret
=
self
.
_func
()
else
:
kwargs
=
dict
()
idx
=
0
for
arg
in
self
.
_named_args
:
kwargs
[
arg
]
=
args
[
idx
]
idx
+=
1
func_ret
=
self
.
_func
(
*
args
[
idx
:],
**
kwargs
)
if
not
isinstance
(
func_ret
,
(
list
,
tuple
)):
func_ret
=
(
func_ret
,)
ret
=
[]
for
each_ret
in
func_ret
:
if
each_ret
is
None
or
isinstance
(
each_ret
,
core
.
LoDTensor
):
ret
.
append
(
each_ret
)
continue
if
not
isinstance
(
each_ret
,
np
.
ndarray
):
each_ret
=
np
.
array
(
each_ret
)
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
each_ret
,
core
.
CPUPlace
())
ret
.
append
(
tensor
)
return
tuple
(
ret
)
@
static_only
@
templatedoc
()
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
,
skip_vars_in_backward_input
=
None
):
"""
:api_attr: Static Graph
This OP is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If ``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
``x`` will be inferred automatically.
This API can also be used to debug the neural network by setting the ``func``
as a function that only print variables.
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no tensors need to be removed from ``x`` and ``out``. If it is not None,
these tensors will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle
import numpy as np
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
for idx in range(4):
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
paddle.enable_static()
def element_wise_add(x, y):
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()
# Input of the forward function
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper
=
LayerHelper
(
'py_func'
,
**
locals
())
check_type
(
x
,
'X'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
x
is
None
:
x
=
[]
elif
isinstance
(
x
,
Variable
):
x
=
[
x
]
elif
isinstance
(
x
,
tuple
):
x
=
list
(
x
)
elif
not
isinstance
(
x
,
(
list
,
tuple
,
Variable
)):
raise
TypeError
(
'Input must be Variable/list(Variable)/tuple(Variable)'
)
check_type
(
out
,
'Out'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
out
is
None
:
out_list
=
[]
elif
isinstance
(
out
,
Variable
):
out_list
=
[
out
]
elif
isinstance
(
out
,
tuple
):
out_list
=
list
(
out
)
elif
isinstance
(
out
,
list
):
out_list
=
out
else
:
raise
TypeError
(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
fwd_func_id
=
PyFuncRegistry
(
func
).
id
bwd_func_id
=
(
PyFuncRegistry
(
backward_func
).
id
if
backward_func
is
not
None
else
-
1
)
for
each_out
in
out_list
:
if
len
(
each_out
.
shape
)
==
0
:
raise
ValueError
(
'Output shapes of py_func op should be provided by users manually'
)
backward_skip_vars
=
set
()
if
backward_func
is
not
None
and
skip_vars_in_backward_input
is
not
None
:
if
isinstance
(
skip_vars_in_backward_input
,
Variable
):
skip_vars_in_backward_input
=
[
skip_vars_in_backward_input
]
fwd_in_out
=
[
v
.
name
for
v
in
x
]
fwd_in_out
.
extend
([
v
.
name
for
v
in
out_list
])
fwd_in_out
=
set
(
fwd_in_out
)
backward_skip_vars
=
set
()
for
v
in
skip_vars_in_backward_input
:
if
not
v
.
name
in
fwd_in_out
:
raise
ValueError
(
'Variable {} is not found in forward inputs and outputs'
.
format
(
v
.
name
)
)
backward_skip_vars
.
add
(
v
.
name
)
helper
.
append_op
(
type
=
'py_func'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out_list
},
attrs
=
{
'forward_callable_id'
:
fwd_func_id
,
'backward_callable_id'
:
bwd_func_id
,
'backward_skip_vars'
:
list
(
backward_skip_vars
),
},
)
return
out
# For debug usage
py_func
.
registered_func
=
PyFuncRegistry
.
registered_func
py_func
.
registered_func_num
=
PyFuncRegistry
.
registered_func_num
def
continuous_value_model
(
input
,
cvm
,
use_cvm
=
True
):
r
"""
...
...
python/paddle/fluid/tests/unittests/test_py_func_op.py
浏览文件 @
518f9d81
...
...
@@ -94,7 +94,7 @@ def simple_fc_net(img, label, use_py_func_op):
shape
=
hidden
.
shape
,
)
)
hidden
=
fluid
.
layers
.
py_func
(
hidden
=
paddle
.
static
.
py_func
(
func
=
tanh
,
x
=
hidden
,
out
=
new_hidden
,
...
...
@@ -111,7 +111,7 @@ def simple_fc_net(img, label, use_py_func_op):
.
current_block
()
.
create_var
(
name
=
'loss'
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
])
)
loss
=
fluid
.
layers
.
py_func
(
loss
=
paddle
.
static
.
py_func
(
func
=
cross_entropy
,
x
=
[
prediction
,
label
],
out
=
loss
,
...
...
@@ -124,11 +124,11 @@ def simple_fc_net(img, label, use_py_func_op):
.
current_block
()
.
create_var
(
name
=
'test_tmp_var'
,
dtype
=
'float32'
,
shape
=
[
1
])
)
fluid
.
layers
.
py_func
(
paddle
.
static
.
py_func
(
func
=
dummy_func_with_no_input
,
x
=
None
,
out
=
dummy_var
)
loss
+=
dummy_var
fluid
.
layers
.
py_func
(
func
=
dummy_func_with_no_output
,
x
=
loss
,
out
=
None
)
paddle
.
static
.
py_func
(
func
=
dummy_func_with_no_output
,
x
=
loss
,
out
=
None
)
loss_out
=
(
fluid
.
default_main_program
()
...
...
@@ -140,7 +140,7 @@ def simple_fc_net(img, label, use_py_func_op):
.
current_block
()
.
create_var
(
dtype
=
'float32'
,
shape
=
[
1
])
)
fluid
.
layers
.
py_func
(
paddle
.
static
.
py_func
(
func
=
dummy_func_with_multi_input_output
,
x
=
(
loss
,
dummy_var
),
out
=
(
loss_out
,
dummy_var_out
),
...
...
@@ -149,7 +149,7 @@ def simple_fc_net(img, label, use_py_func_op):
loss
==
loss_out
and
dummy_var
==
dummy_var_out
),
"py_func failed with multi input and output"
fluid
.
layers
.
py_func
(
paddle
.
static
.
py_func
(
func
=
dummy_func_with_multi_input_output
,
x
=
[
loss
,
dummy_var
],
out
=
[
loss_out
,
dummy_var_out
],
...
...
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
浏览文件 @
518f9d81
...
...
@@ -309,7 +309,7 @@ class PolicyGradient:
"""
update policy model self.model with policy gradient algorithm
"""
self
.
reward
=
fluid
.
layers
.
py_func
(
self
.
reward
=
paddle
.
static
.
py_func
(
func
=
reward_func
,
x
=
[
action
,
length
],
out
=
reward
)
neg_log_prob
=
layers
.
cross_entropy
(
act_prob
,
action
)
...
...
python/paddle/static/__init__.py
浏览文件 @
518f9d81
...
...
@@ -16,6 +16,9 @@
from
.
import
amp
# noqa: F401
from
.
import
sparsity
# noqa: F401
from
.
import
nn
# noqa: F401
from
.nn.common
import
py_func
# noqa: F401
from
.io
import
save_inference_model
# noqa: F401
from
.io
import
load_inference_model
# noqa: F401
from
.io
import
deserialize_persistables
# noqa: F401
...
...
@@ -53,7 +56,6 @@ from ..fluid.framework import Variable # noqa: F401
from
..fluid.framework
import
ipu_shard_guard
# noqa: F401
from
..fluid.framework
import
set_ipu_shard
# noqa: F401
from
..fluid.layers.control_flow
import
Print
# noqa: F401
from
..fluid.layers.nn
import
py_func
# noqa: F401
from
..fluid.parallel_executor
import
ParallelExecutor
# noqa: F401
from
..fluid.param_attr
import
WeightNormParamAttr
# noqa: F401
from
..fluid.optimizer
import
ExponentialMovingAverage
# noqa: F401
...
...
@@ -61,7 +63,6 @@ from ..fluid.io import save # noqa: F401
from
..fluid.io
import
load
# noqa: F401
from
..fluid.io
import
load_program_state
# noqa: F401
from
..fluid.io
import
set_program_state
# noqa: F401
from
..fluid.io
import
load_vars
# noqa: F401
from
..fluid.io
import
save_vars
# noqa: F401
from
..fluid.io
import
batch
# noqa: F401
...
...
python/paddle/static/nn/__init__.py
浏览文件 @
518f9d81
...
...
@@ -20,6 +20,7 @@ from .common import deform_conv2d # noqa: F401
from
.common
import
conv3d
# noqa: F401
from
.common
import
conv2d_transpose
# noqa: F401
from
.common
import
conv3d_transpose
# noqa: F401
from
.common
import
py_func
# noqa: F401
from
...fluid.layers
import
batch_norm
# noqa: F401
from
...fluid.layers
import
bilinear_tensor_product
# noqa: F401
...
...
@@ -32,7 +33,6 @@ from ...fluid.layers import layer_norm # noqa: F401
from
...fluid.layers
import
multi_box_head
# noqa: F401
from
.loss
import
nce
# noqa: F401
from
.common
import
prelu
# noqa: F401
from
...fluid.layers
import
py_func
# noqa: F401
from
...fluid.layers
import
row_conv
# noqa: F401
from
...fluid.layers
import
spectral_norm
# noqa: F401
from
...fluid.layers
import
switch_case
# noqa: F401
...
...
python/paddle/static/nn/common.py
浏览文件 @
518f9d81
...
...
@@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
inspect
import
numpy
as
np
import
paddle
from
paddle.common_ops_import
import
(
LayerHelper
,
...
...
@@ -19,6 +23,7 @@ from paddle.common_ops_import import (
check_variable_and_dtype
,
utils
,
)
from
paddle.fluid
import
core
from
paddle.fluid.data_feeder
import
check_dtype
from
paddle.fluid.framework
import
Variable
,
_non_static_mode
,
static_only
from
paddle.fluid.initializer
import
Constant
,
Normal
...
...
@@ -2083,6 +2088,325 @@ def deform_conv2d(
)
class
PyFuncRegistry
:
_register_funcs
=
[]
def
__init__
(
self
,
func
):
if
func
is
None
or
not
callable
(
func
):
raise
TypeError
(
'func must be a Python function'
)
self
.
_func
=
func
# find named args using reflection
args
=
inspect
.
getfullargspec
(
self
.
_func
)
if
len
(
args
[
0
])
==
0
and
args
[
1
]
is
None
and
args
[
2
]
is
None
:
# Function with no inputs
self
.
_named_args
=
None
else
:
self
.
_named_args
=
args
[
0
]
self
.
_id
=
core
.
_append_python_callable_object_and_return_id
(
self
)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry
.
_register_funcs
.
append
(
self
)
@
classmethod
def
registered_func
(
cls
,
idx
):
return
cls
.
_register_funcs
[
idx
].
_func
@
classmethod
def
registered_func_num
(
cls
):
return
len
(
cls
.
_register_funcs
)
@
property
def
id
(
self
):
return
self
.
_id
def
__call__
(
self
,
*
args
):
if
self
.
_named_args
is
None
:
func_ret
=
self
.
_func
()
else
:
kwargs
=
dict
()
idx
=
0
for
arg
in
self
.
_named_args
:
kwargs
[
arg
]
=
args
[
idx
]
idx
+=
1
func_ret
=
self
.
_func
(
*
args
[
idx
:],
**
kwargs
)
if
not
isinstance
(
func_ret
,
(
list
,
tuple
)):
func_ret
=
(
func_ret
,)
ret
=
[]
for
each_ret
in
func_ret
:
if
each_ret
is
None
or
isinstance
(
each_ret
,
core
.
LoDTensor
):
ret
.
append
(
each_ret
)
continue
if
not
isinstance
(
each_ret
,
np
.
ndarray
):
each_ret
=
np
.
array
(
each_ret
)
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
each_ret
,
core
.
CPUPlace
())
ret
.
append
(
tensor
)
return
tuple
(
ret
)
@
static_only
@
templatedoc
()
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
,
skip_vars_in_backward_input
=
None
):
"""
This is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If ``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
``x`` will be inferred automatically.
This API can also be used to debug the neural network by setting the ``func``
as a function that only print variables.
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no tensors need to be removed from ``x`` and ``out``. If it is not None,
these tensors will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle
import numpy as np
paddle.enable_static()
# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip x in backward function and return the gradient of x
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
for idx in range(4):
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle
import numpy as np
paddle.enable_static()
def element_wise_add(x, y):
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()
# Input of the forward function
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper
=
LayerHelper
(
'py_func'
,
**
locals
())
check_type
(
x
,
'X'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
x
is
None
:
x
=
[]
elif
isinstance
(
x
,
Variable
):
x
=
[
x
]
elif
isinstance
(
x
,
tuple
):
x
=
list
(
x
)
elif
not
isinstance
(
x
,
(
list
,
tuple
,
Variable
)):
raise
TypeError
(
'Input must be Variable/list(Variable)/tuple(Variable)'
)
check_type
(
out
,
'Out'
,
(
list
,
tuple
,
Variable
,
type
(
None
)),
'py_func'
)
if
out
is
None
:
out_list
=
[]
elif
isinstance
(
out
,
Variable
):
out_list
=
[
out
]
elif
isinstance
(
out
,
tuple
):
out_list
=
list
(
out
)
elif
isinstance
(
out
,
list
):
out_list
=
out
else
:
raise
TypeError
(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
fwd_func_id
=
PyFuncRegistry
(
func
).
id
bwd_func_id
=
(
PyFuncRegistry
(
backward_func
).
id
if
backward_func
is
not
None
else
-
1
)
for
each_out
in
out_list
:
if
len
(
each_out
.
shape
)
==
0
:
raise
ValueError
(
'Output shapes of py_func should be provided by users manually'
)
backward_skip_vars
=
set
()
if
backward_func
is
not
None
and
skip_vars_in_backward_input
is
not
None
:
if
isinstance
(
skip_vars_in_backward_input
,
Variable
):
skip_vars_in_backward_input
=
[
skip_vars_in_backward_input
]
fwd_in_out
=
[
v
.
name
for
v
in
x
]
fwd_in_out
.
extend
([
v
.
name
for
v
in
out_list
])
fwd_in_out
=
set
(
fwd_in_out
)
backward_skip_vars
=
set
()
for
v
in
skip_vars_in_backward_input
:
if
v
.
name
not
in
fwd_in_out
:
raise
ValueError
(
'Variable {} is not found in forward inputs and outputs'
.
format
(
v
.
name
)
)
backward_skip_vars
.
add
(
v
.
name
)
helper
.
append_op
(
type
=
'py_func'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out_list
},
attrs
=
{
'forward_callable_id'
:
fwd_func_id
,
'backward_callable_id'
:
bwd_func_id
,
'backward_skip_vars'
:
list
(
backward_skip_vars
),
},
)
return
out
# For debug usage
py_func
.
registered_func
=
PyFuncRegistry
.
registered_func
py_func
.
registered_func_num
=
PyFuncRegistry
.
registered_func_num
@
static_only
def
prelu
(
x
,
mode
,
param_attr
=
None
,
data_format
=
"NCHW"
,
name
=
None
):
r
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录