test_rnn_decode_api.py 30.7 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
G
Guo Sheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import random
G
Guo Sheng 已提交
18
import unittest
19
import numpy as np
G
Guo Sheng 已提交
20

21 22 23 24 25 26 27
import paddle
import paddle.nn as nn
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.fluid.dygraph import Layer
from paddle.nn import BeamSearchDecoder, dynamic_decode

G
Guo Sheng 已提交
28 29 30 31 32 33
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core

from paddle.fluid.executor import Executor
from paddle.fluid import framework
34
from paddle.fluid.framework import _test_eager_guard
35

36 37
paddle.enable_static()

G
Guo Sheng 已提交
38

39
class EncoderCell(layers.RNNCell):
40

G
Guo Sheng 已提交
41 42 43 44
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
45 46 47
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    def call(self, step_input, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](step_input, states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_states.append(new_state)
        return step_input, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


63
class DecoderCell(layers.RNNCell):
64

G
Guo Sheng 已提交
65 66 67 68
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
69 70 71
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
72 73 74 75 76

    def attention(self, hidden, encoder_output, encoder_padding_mask):
        query = layers.fc(hidden,
                          size=encoder_output.shape[-1],
                          bias_attr=False)
77 78 79
        attn_scores = layers.matmul(layers.unsqueeze(query, [1]),
                                    encoder_output,
                                    transpose_y=True)
G
Guo Sheng 已提交
80 81 82 83
        if encoder_padding_mask is not None:
            attn_scores = layers.elementwise_add(attn_scores,
                                                 encoder_padding_mask)
        attn_scores = layers.softmax(attn_scores)
84 85
        attn_out = layers.squeeze(layers.matmul(attn_scores, encoder_output),
                                  [1])
G
Guo Sheng 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
        return attn_out

    def call(self,
             step_input,
             states,
             encoder_output,
             encoder_padding_mask=None):
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i in range(self.num_layers):
            out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_lstm_states.append(new_lstm_state)
        out = self.attention(step_input, encoder_output, encoder_padding_mask)
        return out, [new_lstm_states, out]


107
class Encoder(object):
108

109 110
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
G
Guo Sheng 已提交
111

112 113 114 115 116
    def __call__(self, src_emb, src_sequence_length):
        encoder_output, encoder_final_state = layers.rnn(
            cell=self.encoder_cell,
            inputs=src_emb,
            sequence_length=src_sequence_length,
G
Guo Sheng 已提交
117
            is_reverse=False)
118 119 120 121
        return encoder_output, encoder_final_state


class Decoder(object):
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def __init__(self,
                 num_layers,
                 hidden_size,
                 dropout_prob,
                 decoding_strategy="infer_sample",
                 max_decoding_length=20):
        self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
        self.decoding_strategy = decoding_strategy
        self.max_decoding_length = None if (
            self.decoding_strategy == "train_greedy") else max_decoding_length

    def __call__(self, decoder_initial_states, encoder_output,
                 encoder_padding_mask, **kwargs):
        output_layer = kwargs.pop("output_layer", None)
        if self.decoding_strategy == "train_greedy":
            # for teach-forcing MLE pre-training
            helper = layers.TrainingHelper(**kwargs)
        elif self.decoding_strategy == "infer_sample":
            helper = layers.SampleEmbeddingHelper(**kwargs)
        elif self.decoding_strategy == "infer_greedy":
            helper = layers.GreedyEmbeddingHelper(**kwargs)

        if self.decoding_strategy == "beam_search":
            beam_size = kwargs.get("beam_size", 4)
            encoder_output = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                encoder_output, beam_size)
            encoder_padding_mask = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                encoder_padding_mask, beam_size)
151 152 153
            decoder = layers.BeamSearchDecoder(cell=self.decoder_cell,
                                               output_fn=output_layer,
                                               **kwargs)
154
        else:
155 156 157
            decoder = layers.BasicDecoder(self.decoder_cell,
                                          helper,
                                          output_fn=output_layer)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

        (decoder_output, decoder_final_state,
         dec_seq_lengths) = layers.dynamic_decode(
             decoder,
             inits=decoder_initial_states,
             max_step_num=self.max_decoding_length,
             encoder_output=encoder_output,
             encoder_padding_mask=encoder_padding_mask,
             impute_finished=False  # for test coverage
             if self.decoding_strategy == "beam_search" else True,
             is_test=True if self.decoding_strategy == "beam_search" else False,
             return_length=True)
        return decoder_output, decoder_final_state, dec_seq_lengths


class Seq2SeqModel(object):
    """Seq2Seq model: RNN encoder-decoder with attention"""

    def __init__(self,
                 num_layers,
                 hidden_size,
                 dropout_prob,
                 src_vocab_size,
                 trg_vocab_size,
                 start_token,
                 end_token,
                 decoding_strategy="infer_sample",
                 max_decoding_length=20,
                 beam_size=4):
        self.start_token, self.end_token = start_token, end_token
        self.max_decoding_length, self.beam_size = max_decoding_length, beam_size
J
Jiaqi Liu 已提交
189 190 191 192 193 194 195 196
        self.src_embeder = paddle.nn.Embedding(
            src_vocab_size,
            hidden_size,
            weight_attr=fluid.ParamAttr(name="source_embedding"))
        self.trg_embeder = paddle.nn.Embedding(
            trg_vocab_size,
            hidden_size,
            weight_attr=fluid.ParamAttr(name="target_embedding"))
197 198 199
        self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
        self.decoder = Decoder(num_layers, hidden_size, dropout_prob,
                               decoding_strategy, max_decoding_length)
200 201 202 203 204 205
        self.output_layer = lambda x: layers.fc(x,
                                                size=trg_vocab_size,
                                                num_flatten_dims=len(x.shape) -
                                                1,
                                                param_attr=fluid.ParamAttr(),
                                                bias_attr=False)
G
Guo Sheng 已提交
206

207 208 209 210
    def __call__(self, src, src_length, trg=None, trg_length=None):
        # encoder
        encoder_output, encoder_final_state = self.encoder(
            self.src_embeder(src), src_length)
G
Guo Sheng 已提交
211 212

        decoder_initial_states = [
213 214
            encoder_final_state,
            self.decoder.decoder_cell.get_initial_states(
215
                batch_ref=encoder_output, shape=[encoder_output.shape[-1]])
G
Guo Sheng 已提交
216
        ]
217 218 219
        src_mask = layers.sequence_mask(src_length,
                                        maxlen=layers.shape(src)[1],
                                        dtype="float32")
220 221
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
G
Guo Sheng 已提交
222

223 224 225 226
        # decoder
        decoder_kwargs = {
            "inputs": self.trg_embeder(trg),
            "sequence_length": trg_length,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        } if self.decoder.decoding_strategy == "train_greedy" else (
            {
                "embedding_fn": self.trg_embeder,
                "beam_size": self.beam_size,
                "start_token": self.start_token,
                "end_token": self.end_token
            } if self.decoder.decoding_strategy == "beam_search" else {
                "embedding_fn":
                self.trg_embeder,
                "start_tokens":
                layers.fill_constant_batch_size_like(input=encoder_output,
                                                     shape=[-1],
                                                     dtype=src.dtype,
                                                     value=self.start_token),
                "end_token":
                self.end_token
            })
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        decoder_kwargs["output_layer"] = self.output_layer

        (decoder_output, decoder_final_state,
         dec_seq_lengths) = self.decoder(decoder_initial_states, encoder_output,
                                         encoder_padding_mask, **decoder_kwargs)
        if self.decoder.decoding_strategy == "beam_search":  # for inference
            return decoder_output
        logits, samples, sample_length = (decoder_output.cell_outputs,
                                          decoder_output.sample_ids,
                                          dec_seq_lengths)
        probs = layers.softmax(logits)
        return probs, samples, sample_length


class PolicyGradient(object):
    """policy gradient"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, act_prob, action, reward, length=None):
        """
        update policy model self.model with policy gradient algorithm
        """
268 269 270
        self.reward = fluid.layers.py_func(func=reward_func,
                                           x=[action, length],
                                           out=reward)
271 272
        neg_log_prob = layers.cross_entropy(act_prob, action)
        cost = neg_log_prob * reward
S
ShenLiang 已提交
273
        cost = (layers.reduce_sum(cost) / layers.reduce_sum(length)
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
                ) if length is not None else layers.reduce_mean(cost)
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(cost)
        return cost


def reward_func(samples, sample_length):
    """toy reward"""

    def discount_reward(reward, sequence_length, discount=1.):
        return discount_reward_1d(reward, sequence_length, discount)

    def discount_reward_1d(reward, sequence_length, discount=1., dtype=None):
        if sequence_length is None:
            raise ValueError(
                'sequence_length must not be `None` for 1D reward.')
        reward = np.array(reward)
        sequence_length = np.array(sequence_length)
        batch_size = reward.shape[0]
        max_seq_length = np.max(sequence_length)
        dtype = dtype or reward.dtype
        if discount == 1.:
            dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
G
Guo Sheng 已提交
297
        else:
298
            steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
299 300
            mask = np.asarray(steps < (sequence_length - 1)[:, None],
                              dtype=dtype)
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            # Make each row = [discount, ..., discount, 1, ..., 1]
            dmat = mask * discount + (1 - mask)
            dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
        disc_reward = dmat * reward[:, None]
        disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
        return disc_reward

    def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
        sequence = np.array(sequence)
        sequence_length = np.array(sequence_length)
        rank = sequence.ndim
        if rank < 2:
            raise ValueError("`sequence` must be 2D or higher order.")
        batch_size = sequence.shape[0]
        max_time = sequence.shape[1]
        dtype = dtype or sequence.dtype
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        steps = np.tile(np.arange(max_time), [batch_size, 1])
        mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
        for _ in range(2, rank):
            mask = np.expand_dims(mask, -1)
        sequence = sequence * mask
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        return sequence

    samples = np.array(samples)
    sample_length = np.array(sample_length)
    # length reward
    reward = (5 - np.abs(sample_length - 5)).astype("float32")
    # repeat punishment to trapped into local minima getting all same words
    # beam search to get more than one sample may also can avoid this
    for i in range(reward.shape[0]):
        reward[i] += -10 if sample_length[i] > 1 and np.all(
            samples[i][:sample_length[i] - 1] == samples[i][0]) else 0
    return discount_reward(reward, sample_length, discount=1.).astype("float32")


class MLE(object):
    """teacher-forcing MLE training"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, probs, label, weight=None, length=None):
        loss = layers.cross_entropy(input=probs, label=label, soft_label=False)
        max_seq_len = layers.shape(probs)[1]
        mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
        loss = loss * mask
        loss = layers.reduce_mean(loss, dim=[0])
        loss = layers.reduce_sum(loss)
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(loss)
        return loss


class SeqPGAgent(object):
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    def __init__(self,
                 model_cls,
                 alg_cls=PolicyGradient,
                 model_hparams={},
                 alg_hparams={},
                 executor=None,
                 main_program=None,
                 startup_program=None,
                 seed=None):
        self.main_program = fluid.Program(
        ) if main_program is None else main_program
        self.startup_program = fluid.Program(
        ) if startup_program is None else startup_program
        if seed is not None:
            self.main_program.random_seed = seed
            self.startup_program.random_seed = seed
        self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
        self.executor = executor

    def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
        with fluid.program_guard(self.main_program, self.startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
382 383 384
            source_length = fluid.data(name="src_sequence_length",
                                       shape=[None],
                                       dtype="int64")
385 386
            # only for teacher-forcing MLE training
            target = fluid.data(name="trg", shape=[None, None], dtype="int64")
387 388 389 390 391 392
            target_length = fluid.data(name="trg_sequence_length",
                                       shape=[None],
                                       dtype="int64")
            label = fluid.data(name="label",
                               shape=[None, None, 1],
                               dtype="int64")
393 394 395 396 397
            self.model = model_cls(**model_hparams)
            self.alg = alg_cls(**alg_hparams)
            self.probs, self.samples, self.sample_length = self.model(
                source, source_length, target, target_length)
            self.samples.stop_gradient = True
398
            self.reward = fluid.data(
399
                name="reward",
400
                shape=[None, None],  # batch_size, seq_len
401
                dtype=self.probs.dtype)
402
            self.samples.stop_gradient = False
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            self.cost = self.alg.learn(self.probs, self.samples, self.reward,
                                       self.sample_length)

        # to define the same parameters between different programs
        self.pred_program = self.main_program._prune_with_input(
            [source.name, source_length.name],
            [self.probs, self.samples, self.sample_length])

    def predict(self, feed_dict):
        samples, sample_length = self.executor.run(
            self.pred_program,
            feed=feed_dict,
            fetch_list=[self.samples, self.sample_length])
        return samples, sample_length

    def learn(self, feed_dict, fetch_list):
        results = self.executor.run(self.main_program,
                                    feed=feed_dict,
                                    fetch_list=fetch_list)
        return results


class TestDynamicDecode(unittest.TestCase):
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    def setUp(self):
        np.random.seed(123)
        self.model_hparams = {
            "num_layers": 2,
            "hidden_size": 32,
            "dropout_prob": 0.1,
            "src_vocab_size": 100,
            "trg_vocab_size": 100,
            "start_token": 0,
            "end_token": 1,
            "decoding_strategy": "infer_greedy",
            "max_decoding_length": 10
        }

        self.iter_num = iter_num = 2
        self.batch_size = batch_size = 4
        src_seq_len = 10
        trg_seq_len = 12
        self.data = {
446 447
            "src":
            np.random.randint(
448 449
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, src_seq_len)).astype("int64"),
450 451 452 453 454
            "src_sequence_length":
            np.random.randint(1, src_seq_len,
                              (iter_num * batch_size, )).astype("int64"),
            "trg":
            np.random.randint(
455 456
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len)).astype("int64"),
457 458 459 460 461
            "trg_sequence_length":
            np.random.randint(1, trg_seq_len,
                              (iter_num * batch_size, )).astype("int64"),
            "label":
            np.random.randint(
462 463 464 465
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
        }

466 467
        place = core.CUDAPlace(
            0) if core.is_compiled_with_cuda() else core.CPUPlace()
468 469 470
        self.exe = Executor(place)

    def test_mle_train(self):
471
        paddle.enable_static()
472
        self.model_hparams["decoding_strategy"] = "train_greedy"
473 474 475 476 477 478 479 480
        agent = SeqPGAgent(model_cls=Seq2SeqModel,
                           alg_cls=MLE,
                           model_hparams=self.model_hparams,
                           alg_hparams={"lr": 0.001},
                           executor=self.exe,
                           main_program=fluid.Program(),
                           startup_program=fluid.Program(),
                           seed=123)
481 482 483 484
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
                    "src":
                    self.data["src"][iter_idx * self.batch_size:(iter_idx + 1) *
                                     self.batch_size, :],
                    "src_sequence_length":
                    self.data["src_sequence_length"][iter_idx * self.batch_size:
                                                     (iter_idx + 1) *
                                                     self.batch_size],
                    "trg":
                    self.data["trg"][iter_idx * self.batch_size:(iter_idx + 1) *
                                     self.batch_size, :],
                    "trg_sequence_length":
                    self.data["trg_sequence_length"][iter_idx * self.batch_size:
                                                     (iter_idx + 1) *
                                                     self.batch_size],
                    "label":
                    self.data["label"][iter_idx *
                                       self.batch_size:(iter_idx + 1) *
                                       self.batch_size]
503 504 505 506 507 508
                },
                fetch_list=[agent.cost, agent.cost])
            print("iter_idx: %d, reward: %f, cost: %f" %
                  (iter_idx, reward.mean(), cost))

    def test_greedy_train(self):
509
        paddle.enable_static()
510
        self.model_hparams["decoding_strategy"] = "infer_greedy"
511 512 513 514 515 516 517 518
        agent = SeqPGAgent(model_cls=Seq2SeqModel,
                           alg_cls=PolicyGradient,
                           model_hparams=self.model_hparams,
                           alg_hparams={"lr": 0.001},
                           executor=self.exe,
                           main_program=fluid.Program(),
                           startup_program=fluid.Program(),
                           seed=123)
519 520 521 522
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
523 524 525 526 527 528 529
                    "src":
                    self.data["src"][iter_idx * self.batch_size:(iter_idx + 1) *
                                     self.batch_size, :],
                    "src_sequence_length":
                    self.data["src_sequence_length"][iter_idx * self.batch_size:
                                                     (iter_idx + 1) *
                                                     self.batch_size]
530 531 532 533 534 535
                },
                fetch_list=[agent.reward, agent.cost])
            print("iter_idx: %d, reward: %f, cost: %f" %
                  (iter_idx, reward.mean(), cost))

    def test_sample_train(self):
536
        paddle.enable_static()
537
        self.model_hparams["decoding_strategy"] = "infer_sample"
538 539 540 541 542 543 544 545
        agent = SeqPGAgent(model_cls=Seq2SeqModel,
                           alg_cls=PolicyGradient,
                           model_hparams=self.model_hparams,
                           alg_hparams={"lr": 0.001},
                           executor=self.exe,
                           main_program=fluid.Program(),
                           startup_program=fluid.Program(),
                           seed=123)
546 547 548 549
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
550 551 552 553 554 555 556
                    "src":
                    self.data["src"][iter_idx * self.batch_size:(iter_idx + 1) *
                                     self.batch_size, :],
                    "src_sequence_length":
                    self.data["src_sequence_length"][iter_idx * self.batch_size:
                                                     (iter_idx + 1) *
                                                     self.batch_size]
557 558 559 560 561 562
                },
                fetch_list=[agent.reward, agent.cost])
            print("iter_idx: %d, reward: %f, cost: %f" %
                  (iter_idx, reward.mean(), cost))

    def test_beam_search_infer(self):
563 564
        paddle.set_default_dtype("float32")
        paddle.enable_static()
565 566 567 568 569
        self.model_hparams["decoding_strategy"] = "beam_search"
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
570 571 572
            source_length = fluid.data(name="src_sequence_length",
                                       shape=[None],
                                       dtype="int64")
573 574 575 576 577 578 579 580
            model = Seq2SeqModel(**self.model_hparams)
            output = model(source, source_length)

        self.exe.run(startup_program)
        for iter_idx in range(self.iter_num):
            trans_ids = self.exe.run(
                program=main_program,
                feed={
581 582 583 584 585 586 587 588
                    "src":
                    self.data["src"][iter_idx * self.batch_size:(iter_idx + 1) *
                                     self.batch_size, :],
                    "src_sequence_length":
                    self.data["src_sequence_length"][iter_idx *
                                                     self.batch_size:(iter_idx +
                                                                      1) *
                                                     self.batch_size]
589 590
                },
                fetch_list=[output])[0]
G
Guo Sheng 已提交
591

592
    def func_dynamic_basic_decoder(self):
J
Jiaqi Liu 已提交
593 594 595 596 597 598 599
        paddle.disable_static()
        src = paddle.to_tensor(np.random.randint(8, size=(8, 4)))
        src_length = paddle.to_tensor(np.random.randint(8, size=(8)))
        model = Seq2SeqModel(**self.model_hparams)
        probs, samples, sample_length = model(src, src_length)
        paddle.enable_static()

600 601 602 603 604
    def test_dynamic_basic_decoder(self):
        with _test_eager_guard():
            self.func_dynamic_basic_decoder()
        self.func_dynamic_basic_decoder()

G
Guo Sheng 已提交
605

606
class ModuleApiTest(unittest.TestCase):
607

608 609 610 611 612 613 614 615
    @classmethod
    def setUpClass(cls):
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls._random_seed = 123
        np.random.seed(cls._random_seed)
        random.seed(cls._random_seed)

616 617 618 619 620
        cls.model_cls = type(
            cls.__name__ + "Model", (Layer, ), {
                "__init__": cls.model_init_wrapper(cls.model_init),
                "forward": cls.model_forward
            })
621 622 623 624 625 626 627 628

    @classmethod
    def tearDownClass(cls):
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

    @staticmethod
    def model_init_wrapper(func):
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        def __impl__(self, *args, **kwargs):
            Layer.__init__(self)
            func(self, *args, **kwargs)

        return __impl__

    @staticmethod
    def model_init(model, *args, **kwargs):
        raise NotImplementedError(
            "model_init acts as `Model.__init__`, thus must implement it")

    @staticmethod
    def model_forward(model, *args, **kwargs):
        return model.module(*args, **kwargs)

    def make_inputs(self):
        # TODO(guosheng): add default from `self.inputs`
        raise NotImplementedError(
            "model_inputs makes inputs for model, thus must implement it")

    def setUp(self):
        """
        For the model which wraps the module to be tested:
            Set input data by `self.inputs` list
            Set init argument values by `self.attrs` list/dict
            Set model parameter values by `self.param_states` dict
            Set expected output data by `self.outputs` list
        We can create a model instance and run once with these.
        """
        self.inputs = []
        self.attrs = {}
        self.param_states = {}
        self.outputs = []

    def _calc_output(self, place, mode="test", dygraph=True):
        if dygraph:
            fluid.enable_dygraph(place)
        else:
            fluid.disable_dygraph()
C
cnn 已提交
669
        gen = paddle.seed(self._random_seed)
670 671 672 673 674 675 676 677 678
        paddle.framework.random._manual_program_seed(self._random_seed)
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            layer = self.model_cls(**self.attrs) if isinstance(
                self.attrs, dict) else self.model_cls(*self.attrs)
            model = Model(layer, inputs=self.make_inputs())
            model.prepare()
            if self.param_states:
                model.load(self.param_states, optim_state=None)
679
            return model.predict_batch(self.inputs)
680 681 682 683 684 685 686 687 688 689

    def check_output_with_place(self, place, mode="test"):
        dygraph_output = self._calc_output(place, mode, dygraph=True)
        stgraph_output = self._calc_output(place, mode, dygraph=False)
        expect_output = getattr(self, "outputs", None)
        for actual_t, expect_t in zip(dygraph_output, stgraph_output):
            self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0))
        if expect_output:
            for actual_t, expect_t in zip(dygraph_output, expect_output):
                self.assertTrue(
690
                    np.allclose(actual_t, expect_t, rtol=1e-5, atol=0))
691 692 693 694 695 696 697 698 699

    def check_output(self):
        devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
        for device in devices:
            place = set_device(device)
            self.check_output_with_place(place)


class TestBeamSearch(ModuleApiTest):
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    def setUp(self):
        paddle.set_default_dtype("float64")
        shape = (8, 32)
        self.inputs = [
            np.random.random(shape).astype("float64"),
            np.random.random(shape).astype("float64")
        ]
        self.outputs = None
        self.attrs = {
            "vocab_size": 100,
            "embed_dim": 32,
            "hidden_size": 32,
        }
        self.param_states = {}

    @staticmethod
    def model_init(self,
                   vocab_size,
                   embed_dim,
                   hidden_size,
                   bos_id=0,
                   eos_id=1,
J
Jiaqi Liu 已提交
723 724
                   beam_size=4,
                   max_step_num=20):
725 726
        embedder = paddle.fluid.dygraph.Embedding(size=[vocab_size, embed_dim],
                                                  dtype="float64")
727 728 729
        output_layer = nn.Linear(hidden_size, vocab_size)
        cell = nn.LSTMCell(embed_dim, hidden_size)
        self.max_step_num = max_step_num
730 731 732 733 734 735
        self.beam_search_decoder = BeamSearchDecoder(cell,
                                                     start_token=bos_id,
                                                     end_token=eos_id,
                                                     beam_size=beam_size,
                                                     embedding_fn=embedder,
                                                     output_fn=output_layer)
736 737 738

    @staticmethod
    def model_forward(model, init_hidden, init_cell):
739 740 741 742 743
        return dynamic_decode(model.beam_search_decoder,
                              [init_hidden, init_cell],
                              max_step_num=model.max_step_num,
                              impute_finished=True,
                              is_test=True)[0]
744 745 746 747 748 749 750 751

    def make_inputs(self):
        inputs = [
            Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
            Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
        ]
        return inputs

752 753 754
    def func_check_output(self):
        self.setUp()
        self.make_inputs()
755 756
        self.check_output()

757 758 759 760 761
    def test_check_output(self):
        with _test_eager_guard():
            self.func_check_output()
        self.func_check_output()

762

G
Guo Sheng 已提交
763 764
if __name__ == '__main__':
    unittest.main()