nets.py 26.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle
16
from . import layers
17
from .data_feeder import check_variable_and_dtype, convert_dtype
F
Feiyu Chan 已提交
18
from ..utils import deprecated
19
import paddle
F
fengjiayi 已提交
20

21 22 23
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
24
    "glu",
25
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
26
    "img_conv_group",
27
]
D
dzhwinter 已提交
28

F
fengjiayi 已提交
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def simple_img_conv_pool(
    input,
    num_filters,
    filter_size,
    pool_size,
    pool_stride,
    pool_padding=0,
    pool_type='max',
    global_pooling=False,
    conv_stride=1,
    conv_padding=0,
    conv_dilation=1,
    conv_groups=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    use_cudnn=True,
):
48
    r"""
49
        :api_attr: Static Graph
S
swtkiwi 已提交
50

S
SunGaofeng 已提交
51
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
52 53

    Args:
S
SunGaofeng 已提交
54 55
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
56 57 58
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
59
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
60 61
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
62
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
63 64
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
65
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
66 67
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
68
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
69 70 71
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
72
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
73 74
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
75
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
76 77
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
78
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
79 80
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
81
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
82 83 84
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
99 100 101 102
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
103 104 105 106
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
107 108 109 110

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
111
            import paddle.fluid as fluid
C
cnn 已提交
112 113
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
114
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
115 116 117 118 119 120 121
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
122 123 124 125 126 127 128 129 130 131 132 133 134
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
        use_cudnn=use_cudnn,
    )
C
ccrrong 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if pool_type == 'max':
        pool_out = paddle.nn.functional.max_pool2d(
            x=conv_out,
            kernel_size=pool_size,
            stride=pool_stride,
            padding=pool_padding,
        )
    else:
        pool_out = paddle.nn.functional.avg_pool2d(
            x=conv_out,
            kernel_size=pool_size,
            stride=pool_stride,
            padding=pool_padding,
        )
Q
Qiao Longfei 已提交
149 150 151
    return pool_out


152 153 154 155 156 157 158 159 160 161 162 163 164 165
def img_conv_group(
    input,
    conv_num_filter,
    pool_size,
    conv_padding=1,
    conv_filter_size=3,
    conv_act=None,
    param_attr=None,
    conv_with_batchnorm=False,
    conv_batchnorm_drop_rate=0.0,
    pool_stride=1,
    pool_type="max",
    use_cudnn=True,
):
Q
Qiao Longfei 已提交
166
    """
167
        :api_attr: Static Graph
S
swtkiwi 已提交
168

C
chengduoZH 已提交
169
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
170
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
171
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
172
    result to Pool2D.
C
chengduoZH 已提交
173 174

    Args:
L
lvmengsi 已提交
175
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
176
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
177
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
178 179
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
180
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
181
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
182
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
183 184
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
185 186
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
187
            Default: None.
C
cnn 已提交
188 189
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
190 191
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
192
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
193 194 195 196
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
197
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
198 199 200 201 202 203 204 205 206
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
207
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
208
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
209 210 211 212

    Examples:
        .. code-block:: python

213
            import paddle.fluid as fluid
C
cnn 已提交
214 215
            import paddle
            paddle.enable_static()
216

L
lvmengsi 已提交
217
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
218 219 220 221 222 223 224
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
225 226
    """
    tmp = input
227 228 229
    assert isinstance(conv_num_filter, list) or isinstance(
        conv_num_filter, tuple
    )
Q
Qiao Longfei 已提交
230 231 232 233 234

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
235
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
236 237 238 239
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
240
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
241 242 243
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

244
    for i in range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
245 246 247 248
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

249 250 251 252 253 254 255 256 257
        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
            param_attr=param_attr[i],
            act=local_conv_act,
            use_cudnn=use_cudnn,
        )
Q
Qiao Longfei 已提交
258 259

        if conv_with_batchnorm[i]:
260
            tmp = paddle.static.nn.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
261 262
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
263
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
264

C
ccrrong 已提交
265 266 267 268 269 270 271 272 273 274 275 276
    if pool_type == 'max':
        pool_out = paddle.nn.functional.max_pool2d(
            x=tmp,
            kernel_size=pool_size,
            stride=pool_stride,
        )
    else:
        pool_out = paddle.nn.functional.avg_pool2d(
            x=tmp,
            kernel_size=pool_size,
            stride=pool_stride,
        )
F
fengjiayi 已提交
277
    return pool_out
D
dzhwinter 已提交
278 279


280 281 282 283 284 285 286 287 288
def sequence_conv_pool(
    input,
    num_filters,
    filter_size,
    param_attr=None,
    act="sigmoid",
    pool_type="max",
    bias_attr=None,
):
C
chengduoZH 已提交
289
    """
290
        :api_attr: Static Graph
S
swtkiwi 已提交
291

292
    **This api takes input as an LoDTensor. If input is a Tensor, please use**
S
SunGaofeng 已提交
293 294
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

295
    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv`
S
SunGaofeng 已提交
296
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
297 298

    Args:
299 300
        input (Variable): 2-D LoDTensor, the input of sequence_conv,
            which supports variable-time length input sequence.
S
SunGaofeng 已提交
301
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
302
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
303
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
304 305
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
306
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
307
        act (str|None): Activation type for Sequence_conv Layer.
S
SunGaofeng 已提交
308
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
309 310 311
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
312 313 314 315 316
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
317

S
SunGaofeng 已提交
318
    Returns:
319
        The final result after sequence_conv and sequence_pool.
S
SunGaofeng 已提交
320 321 322 323
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
324 325 326 327

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
328
            import paddle.fluid as fluid
C
cnn 已提交
329 330
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
331
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
332 333
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
334
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
335 336 337 338 339 340 341
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
342 343

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
344 345 346 347 348 349 350 351
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
    )
D
dzhwinter 已提交
352

353
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
354
    return pool_out
G
guosheng 已提交
355 356


F
Feiyu Chan 已提交
357
@deprecated(since="2.0.0", update_to="paddle.nn.functional.glu")
G
guosheng 已提交
358
def glu(input, dim=-1):
359
    r"""
360
        :api_attr: Static Graph
S
swtkiwi 已提交
361

362 363
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` ,
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` .
Y
Yibing Liu 已提交
364
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
365
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
366
    following:
G
guosheng 已提交
367 368 369 370 371

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
372
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
373
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
374

G
guosheng 已提交
375
    Args:
376 377
        input (Variable): The input variable which is a Tensor or LoDTensor.
                          The supported data types include float32, float64
Y
Yibing Liu 已提交
378 379
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
380
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
381 382

    Returns:
Y
Yibing Liu 已提交
383
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
384 385 386 387

    Examples:
        .. code-block:: python

388
            import paddle.fluid as fluid
C
cnn 已提交
389 390
            import paddle
            paddle.enable_static()
391

Y
Yibing Liu 已提交
392
            data = fluid.data(
Y
Yibing Liu 已提交
393 394 395
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
396
    """
397 398 399
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], "glu"
    )
G
guosheng 已提交
400
    a, b = layers.split(input, num_or_sections=2, dim=dim)
401
    act_b = paddle.nn.functional.sigmoid(x=b)
402
    out = paddle.multiply(x=a, y=act_b)
G
guosheng 已提交
403
    return out
404 405


406 407 408
def scaled_dot_product_attention(
    queries, keys, values, num_heads=1, dropout_rate=0.0
):
409
    r"""
C
cnn 已提交
410
	:api_attr: Static Graph
S
swtkiwi 已提交
411

G
Guo Sheng 已提交
412
    This interface Multi-Head Attention using scaled dot product.
413
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
414 415 416
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
417

G
Guo Sheng 已提交
418
    .. math::
419

G
Guo Sheng 已提交
420 421 422
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
423

G
Guo Sheng 已提交
424
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
425

G
Guo Sheng 已提交
426 427 428 429 430 431
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
432

Y
ying 已提交
433
    Args:
G
Guo Sheng 已提交
434 435 436 437 438 439 440 441 442 443 444 445
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
446
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
447 448 449
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
450 451

    Returns:
G
Guo Sheng 已提交
452 453 454 455 456
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
457

Y
ying 已提交
458
    Raises:
459
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
460
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
461
        ValueError: The hidden size of queries and keys should be the same.
462
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
463 464
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
465

466 467 468
    Examples:
        .. code-block:: python

469
            import paddle.fluid as fluid
C
cnn 已提交
470 471
            import paddle
            paddle.enable_static()
472

G
Guo Sheng 已提交
473 474 475
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
476
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
477
            contexts.shape  # [3, 5, 10]
478
    """
479 480 481 482 483 484 485 486 487 488 489 490
    check_variable_and_dtype(
        queries,
        'queries',
        ['float32', 'float64'],
        "scaled_dot_product_attention",
    )
    check_variable_and_dtype(
        keys, 'keys', ['float32', 'float64'], "scaled_dot_product_attention"
    )
    check_variable_and_dtype(
        values, 'values', ['float32', 'float64'], "scaled_dot_product_attention"
    )
491 492 493 494 495

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
496 497 498 499 500 501 502
            " keys.dtype = %s, values.dtype) = %s."
            % (
                convert_dtype(queries.dtype),
                convert_dtype(keys.dtype),
                convert_dtype(values.dtype),
            )
        )
503

Y
ying 已提交
504 505
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
506 507
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
508 509 510
            "len(keys.shape) = %d, len(values.shape) = %d."
            % (len(queries.shape), len(keys.shape), len(values.shape))
        )
Y
ying 已提交
511 512 513

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
514 515
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
516 517
            % (queries.shape[-1], keys.shape[-1])
        )
Y
ying 已提交
518 519
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
520 521
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
522 523
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2])
        )
Y
ying 已提交
524
    if keys.shape[-1] % num_heads != 0:
525 526 527 528 529
        raise ValueError(
            "The hidden size of keys (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (keys.shape[-1], num_heads)
        )
Y
ying 已提交
530
    if values.shape[-1] % num_heads != 0:
531 532 533 534 535
        raise ValueError(
            "The hidden size of values (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (values.shape[-1], num_heads)
        )
Y
ying 已提交
536

Y
ying 已提交
537
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
554 555 556 557 558 559 560 561
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
562 563
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
564
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
565 566 567
        dimensions.

        Args:
Y
ying 已提交
568 569
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
570 571

        Returns:
Y
ying 已提交
572 573
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
574
        """
Y
ying 已提交
575 576
        if num_heads == 1:
            return x
577

Y
ying 已提交
578
        hidden_size = x.shape[-1]
579 580 581
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
582
        reshaped = paddle.reshape(
583 584 585
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads],
        )
586

T
tianshuo78520a 已提交
587
        # permute the dimensions into:
588
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
589
        return paddle.transpose(x=reshaped, perm=[0, 2, 1, 3])
590 591

    def __combine_heads(x):
Y
ying 已提交
592
        """
T
tianshuo78520a 已提交
593
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
594 595 596 597 598 599 600 601 602 603 604
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

605 606
        if len(x.shape) == 3:
            return x
607 608 609
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

610
        trans_x = paddle.transpose(x, perm=[0, 2, 1, 3])
611
        return paddle.reshape(
612 613 614 615 616 617 618 619 620 621 622 623
            x=trans_x,
            shape=list(
                map(
                    int,
                    [
                        trans_x.shape[0],
                        trans_x.shape[1],
                        trans_x.shape[2] * trans_x.shape[3],
                    ],
                )
            ),
        )
624

Y
ying 已提交
625 626 627 628 629
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
630 631

    key_dim_per_head = keys.shape[-1] // num_heads
2
201716010711 已提交
632
    scaled_q = paddle.scale(x=q, scale=key_dim_per_head**-0.5)
K
kangguangli 已提交
633
    product = paddle.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
634

635 636 637 638
    x = paddle.reshape(x=product, shape=[-1, product.shape[-1]])
    x = paddle.nn.functional.softmax(x)
    weights = paddle.reshape(x=x, shape=product.shape)

Y
ying 已提交
639
    if dropout_rate:
640 641 642
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False
        )
K
kangguangli 已提交
643
    ctx_multiheads = paddle.matmul(weights, v)
Y
ying 已提交
644
    return __combine_heads(ctx_multiheads)