nets.py 26.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle
16
from . import layers
17
from .data_feeder import check_variable_and_dtype, convert_dtype
F
Feiyu Chan 已提交
18
from ..utils import deprecated
F
fengjiayi 已提交
19

20 21 22
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
23
    "glu",
24
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
25
    "img_conv_group",
26
]
D
dzhwinter 已提交
27

F
fengjiayi 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
def simple_img_conv_pool(
    input,
    num_filters,
    filter_size,
    pool_size,
    pool_stride,
    pool_padding=0,
    pool_type='max',
    global_pooling=False,
    conv_stride=1,
    conv_padding=0,
    conv_dilation=1,
    conv_groups=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    use_cudnn=True,
):
47
    r"""
48
        :api_attr: Static Graph
S
swtkiwi 已提交
49

S
SunGaofeng 已提交
50
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
51 52

    Args:
S
SunGaofeng 已提交
53 54
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
55 56 57
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
58
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
59 60
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
61
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
62 63
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
64
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
65 66
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
67
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
68 69 70
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
71
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
72 73
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
74
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
75 76
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
77
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
78 79
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
80
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
81 82 83
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
98 99 100 101
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
102 103 104 105
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
106 107 108 109

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
110
            import paddle.fluid as fluid
C
cnn 已提交
111 112
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
113
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
114 115 116 117 118 119 120
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
        use_cudnn=use_cudnn,
    )

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
        pool_type=pool_type,
        pool_stride=pool_stride,
        pool_padding=pool_padding,
        global_pooling=global_pooling,
        use_cudnn=use_cudnn,
    )
Q
Qiao Longfei 已提交
144 145 146
    return pool_out


147 148 149 150 151 152 153 154 155 156 157 158 159 160
def img_conv_group(
    input,
    conv_num_filter,
    pool_size,
    conv_padding=1,
    conv_filter_size=3,
    conv_act=None,
    param_attr=None,
    conv_with_batchnorm=False,
    conv_batchnorm_drop_rate=0.0,
    pool_stride=1,
    pool_type="max",
    use_cudnn=True,
):
Q
Qiao Longfei 已提交
161
    """
162
        :api_attr: Static Graph
S
swtkiwi 已提交
163

C
chengduoZH 已提交
164
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
165
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
166
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
167
    result to Pool2D.
C
chengduoZH 已提交
168 169

    Args:
L
lvmengsi 已提交
170
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
171
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
172
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
173 174
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
175
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
176
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
177
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
178 179
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
180 181
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
182
            Default: None.
C
cnn 已提交
183 184
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
185 186
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
187
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
188 189 190 191
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
192
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
193 194 195 196 197 198 199 200 201
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
202
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
203
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
204 205 206 207

    Examples:
        .. code-block:: python

208
            import paddle.fluid as fluid
C
cnn 已提交
209 210
            import paddle
            paddle.enable_static()
211

L
lvmengsi 已提交
212
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
213 214 215 216 217 218 219
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
220 221
    """
    tmp = input
222 223 224
    assert isinstance(conv_num_filter, list) or isinstance(
        conv_num_filter, tuple
    )
Q
Qiao Longfei 已提交
225 226 227 228 229

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
230
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
231 232 233 234
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
235
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
236 237 238
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

239
    for i in range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
240 241 242 243
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

244 245 246 247 248 249 250 251 252
        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
            param_attr=param_attr[i],
            act=local_conv_act,
            use_cudnn=use_cudnn,
        )
Q
Qiao Longfei 已提交
253 254

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
255
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
256 257
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
258
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
259

260 261 262 263 264 265 266
    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
        pool_stride=pool_stride,
        use_cudnn=use_cudnn,
    )
F
fengjiayi 已提交
267
    return pool_out
D
dzhwinter 已提交
268 269


270 271 272 273 274 275 276 277 278
def sequence_conv_pool(
    input,
    num_filters,
    filter_size,
    param_attr=None,
    act="sigmoid",
    pool_type="max",
    bias_attr=None,
):
C
chengduoZH 已提交
279
    """
280
        :api_attr: Static Graph
S
swtkiwi 已提交
281

282
    **This api takes input as an LoDTensor. If input is a Tensor, please use**
S
SunGaofeng 已提交
283 284
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

285
    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv`
S
SunGaofeng 已提交
286
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
287 288

    Args:
289 290
        input (Variable): 2-D LoDTensor, the input of sequence_conv,
            which supports variable-time length input sequence.
S
SunGaofeng 已提交
291
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
292
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
293
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
294 295
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
296
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
297
        act (str|None): Activation type for Sequence_conv Layer.
S
SunGaofeng 已提交
298
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
299 300 301
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
302 303 304 305 306
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
307

S
SunGaofeng 已提交
308
    Returns:
309
        The final result after sequence_conv and sequence_pool.
S
SunGaofeng 已提交
310 311 312 313
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
314 315 316 317

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
318
            import paddle.fluid as fluid
C
cnn 已提交
319 320
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
321
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
322 323
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
324
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
325 326 327 328 329 330 331
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
332 333

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
334 335 336 337 338 339 340 341
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act,
    )
D
dzhwinter 已提交
342

343
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
344
    return pool_out
G
guosheng 已提交
345 346


F
Feiyu Chan 已提交
347
@deprecated(since="2.0.0", update_to="paddle.nn.functional.glu")
G
guosheng 已提交
348
def glu(input, dim=-1):
349
    r"""
350
        :api_attr: Static Graph
S
swtkiwi 已提交
351

352 353
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` ,
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` .
Y
Yibing Liu 已提交
354
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
355
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
356
    following:
G
guosheng 已提交
357 358 359 360 361

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
362
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
363
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
364

G
guosheng 已提交
365
    Args:
366 367
        input (Variable): The input variable which is a Tensor or LoDTensor.
                          The supported data types include float32, float64
Y
Yibing Liu 已提交
368 369
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
370
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
371 372

    Returns:
Y
Yibing Liu 已提交
373
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
374 375 376 377

    Examples:
        .. code-block:: python

378
            import paddle.fluid as fluid
C
cnn 已提交
379 380
            import paddle
            paddle.enable_static()
381

Y
Yibing Liu 已提交
382
            data = fluid.data(
Y
Yibing Liu 已提交
383 384 385
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
386
    """
387 388 389
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], "glu"
    )
G
guosheng 已提交
390
    a, b = layers.split(input, num_or_sections=2, dim=dim)
391
    act_b = paddle.nn.functional.sigmoid(x=b)
G
guosheng 已提交
392
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
393
    return out
394 395


396 397 398
def scaled_dot_product_attention(
    queries, keys, values, num_heads=1, dropout_rate=0.0
):
399
    r"""
C
cnn 已提交
400
	:api_attr: Static Graph
S
swtkiwi 已提交
401

G
Guo Sheng 已提交
402
    This interface Multi-Head Attention using scaled dot product.
403
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
404 405 406
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
407

G
Guo Sheng 已提交
408
    .. math::
409

G
Guo Sheng 已提交
410 411 412
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
413

G
Guo Sheng 已提交
414
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
415

G
Guo Sheng 已提交
416 417 418 419 420 421
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
422

Y
ying 已提交
423
    Args:
G
Guo Sheng 已提交
424 425 426 427 428 429 430 431 432 433 434 435
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
436
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
437 438 439
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
440 441

    Returns:
G
Guo Sheng 已提交
442 443 444 445 446
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
447

Y
ying 已提交
448
    Raises:
449
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
450
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
451
        ValueError: The hidden size of queries and keys should be the same.
452
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
453 454
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
455

456 457 458
    Examples:
        .. code-block:: python

459
            import paddle.fluid as fluid
C
cnn 已提交
460 461
            import paddle
            paddle.enable_static()
462

G
Guo Sheng 已提交
463 464 465
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
466
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
467
            contexts.shape  # [3, 5, 10]
468
    """
469 470 471 472 473 474 475 476 477 478 479 480
    check_variable_and_dtype(
        queries,
        'queries',
        ['float32', 'float64'],
        "scaled_dot_product_attention",
    )
    check_variable_and_dtype(
        keys, 'keys', ['float32', 'float64'], "scaled_dot_product_attention"
    )
    check_variable_and_dtype(
        values, 'values', ['float32', 'float64'], "scaled_dot_product_attention"
    )
481 482 483 484 485

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
486 487 488 489 490 491 492
            " keys.dtype = %s, values.dtype) = %s."
            % (
                convert_dtype(queries.dtype),
                convert_dtype(keys.dtype),
                convert_dtype(values.dtype),
            )
        )
493

Y
ying 已提交
494 495
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
496 497
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
498 499 500
            "len(keys.shape) = %d, len(values.shape) = %d."
            % (len(queries.shape), len(keys.shape), len(values.shape))
        )
Y
ying 已提交
501 502 503

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
504 505
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
506 507
            % (queries.shape[-1], keys.shape[-1])
        )
Y
ying 已提交
508 509
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
510 511
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
512 513
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2])
        )
Y
ying 已提交
514
    if keys.shape[-1] % num_heads != 0:
515 516 517 518 519
        raise ValueError(
            "The hidden size of keys (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (keys.shape[-1], num_heads)
        )
Y
ying 已提交
520
    if values.shape[-1] % num_heads != 0:
521 522 523 524 525
        raise ValueError(
            "The hidden size of values (%d) must be divisible "
            "by the number of attention heads (%d)."
            % (values.shape[-1], num_heads)
        )
Y
ying 已提交
526

Y
ying 已提交
527
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
544 545 546 547 548 549 550 551
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
552 553
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
554
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
555 556 557
        dimensions.

        Args:
Y
ying 已提交
558 559
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
560 561

        Returns:
Y
ying 已提交
562 563
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
564
        """
Y
ying 已提交
565 566
        if num_heads == 1:
            return x
567

Y
ying 已提交
568
        hidden_size = x.shape[-1]
569 570 571
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
572 573 574 575
        reshaped = layers.reshape(
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads],
        )
576

T
tianshuo78520a 已提交
577
        # permute the dimensions into:
578 579 580 581
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
582
        """
T
tianshuo78520a 已提交
583
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
584 585 586 587 588 589 590 591 592 593 594
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

595 596
        if len(x.shape) == 3:
            return x
597 598 599
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
600
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
601 602 603 604 605 606 607 608 609 610 611 612 613
        return layers.reshape(
            x=trans_x,
            shape=list(
                map(
                    int,
                    [
                        trans_x.shape[0],
                        trans_x.shape[1],
                        trans_x.shape[2] * trans_x.shape[3],
                    ],
                )
            ),
        )
614

Y
ying 已提交
615 616 617 618 619
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
620 621

    key_dim_per_head = keys.shape[-1] // num_heads
622
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
623
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
624

625 626 627 628 629 630
    weights = layers.reshape(
        x=layers.reshape(
            x=product, shape=[-1, product.shape[-1]], act="softmax"
        ),
        shape=product.shape,
    )
Y
ying 已提交
631
    if dropout_rate:
632 633 634
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False
        )
Y
ying 已提交
635 636
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)