nets.py 27.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

M
minqiyang 已提交
15
import six
16
from . import layers
17
from .data_feeder import check_variable_and_dtype, convert_dtype
F
Feiyu Chan 已提交
18
from ..utils import deprecated
F
fengjiayi 已提交
19

20 21 22
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
23
    "glu",
24
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
25
    "img_conv_group",
26
]
D
dzhwinter 已提交
27

F
fengjiayi 已提交
28 29 30

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
31
                         filter_size,
F
fengjiayi 已提交
32 33
                         pool_size,
                         pool_stride,
C
chengduoZH 已提交
34
                         pool_padding=0,
C
chengduoZH 已提交
35
                         pool_type='max',
C
chengduoZH 已提交
36 37 38 39 40 41 42 43
                         global_pooling=False,
                         conv_stride=1,
                         conv_padding=0,
                         conv_dilation=1,
                         conv_groups=1,
                         param_attr=None,
                         bias_attr=None,
                         act=None,
X
Xin Pan 已提交
44
                         use_cudnn=True):
45
    r"""
C
cnn 已提交
46
	:api_attr: Static Graph
S
swtkiwi 已提交
47

S
SunGaofeng 已提交
48
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
49 50

    Args:
S
SunGaofeng 已提交
51 52
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
53 54 55
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
56
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
57 58
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
59
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
60 61
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
62
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
63 64
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
65
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
66 67 68
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
69
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
70 71
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
72
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
73 74
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
75
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
76 77
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
78
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
79 80 81
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
96 97 98 99
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
100 101 102 103
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
104 105 106 107

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
108
            import paddle.fluid as fluid
C
cnn 已提交
109 110
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
111
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
112 113 114 115 116 117 118
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    conv_out = layers.conv2d(input=input,
                             num_filters=num_filters,
                             filter_size=filter_size,
                             stride=conv_stride,
                             padding=conv_padding,
                             dilation=conv_dilation,
                             groups=conv_groups,
                             param_attr=param_attr,
                             bias_attr=bias_attr,
                             act=act,
                             use_cudnn=use_cudnn)

    pool_out = layers.pool2d(input=conv_out,
                             pool_size=pool_size,
                             pool_type=pool_type,
                             pool_stride=pool_stride,
                             pool_padding=pool_padding,
                             global_pooling=global_pooling,
                             use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
138 139 140 141 142 143 144 145 146
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
147
                   param_attr=None,
Q
Qiao Longfei 已提交
148
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
149
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
150
                   pool_stride=1,
C
chengduoZH 已提交
151
                   pool_type="max",
X
Xin Pan 已提交
152
                   use_cudnn=True):
Q
Qiao Longfei 已提交
153
    """
C
cnn 已提交
154
	:api_attr: Static Graph
S
swtkiwi 已提交
155

C
chengduoZH 已提交
156
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
157
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
158
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
159
    result to Pool2D.
C
chengduoZH 已提交
160 161

    Args:
L
lvmengsi 已提交
162
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
163
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
164
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
165 166
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
167
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
168
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
169
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
170 171
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
172 173
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
174
            Default: None.
C
cnn 已提交
175 176
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
177 178
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
179
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
180 181 182 183
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
184
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
185 186 187 188 189 190 191 192 193
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
194
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
195
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
196 197 198 199

    Examples:
        .. code-block:: python

200
            import paddle.fluid as fluid
C
cnn 已提交
201 202
            import paddle
            paddle.enable_static()
203

L
lvmengsi 已提交
204
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
205 206 207 208 209 210 211
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
212 213 214
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
215
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
216 217 218 219 220

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
221
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
222 223 224 225
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
226
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
227 228 229
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

M
minqiyang 已提交
230
    for i in six.moves.range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
231 232 233 234
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

235 236 237 238 239 240 241
        tmp = layers.conv2d(input=tmp,
                            num_filters=conv_num_filter[i],
                            filter_size=conv_filter_size[i],
                            padding=conv_padding[i],
                            param_attr=param_attr[i],
                            act=local_conv_act,
                            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
242 243

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
244
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
245 246
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
247
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
248

249 250 251 252 253
    pool_out = layers.pool2d(input=tmp,
                             pool_size=pool_size,
                             pool_type=pool_type,
                             pool_stride=pool_stride,
                             use_cudnn=use_cudnn)
F
fengjiayi 已提交
254
    return pool_out
D
dzhwinter 已提交
255 256 257 258 259


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
260
                       param_attr=None,
261
                       act="sigmoid",
262 263
                       pool_type="max",
                       bias_attr=None):
C
chengduoZH 已提交
264
    """
C
cnn 已提交
265
	:api_attr: Static Graph
S
swtkiwi 已提交
266

267
    **This api takes input as an LoDTensor. If input is a Tensor, please use**
S
SunGaofeng 已提交
268 269
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

270
    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv`
S
SunGaofeng 已提交
271
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
272 273

    Args:
274 275
        input (Variable): 2-D LoDTensor, the input of sequence_conv,
            which supports variable-time length input sequence.
S
SunGaofeng 已提交
276
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
277
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
278
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
279 280
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
281
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
282
        act (str|None): Activation type for Sequence_conv Layer.
S
SunGaofeng 已提交
283
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
284 285 286
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
287 288 289 290 291
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
292

S
SunGaofeng 已提交
293
    Returns:
294
        The final result after sequence_conv and sequence_pool.
S
SunGaofeng 已提交
295 296 297 298
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
299 300 301 302

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
303
            import paddle.fluid as fluid
C
cnn 已提交
304 305
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
306
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
307 308
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
309
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
310 311 312 313 314 315 316
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
317 318

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
319 320 321 322 323 324
    conv_out = layers.sequence_conv(input=input,
                                    num_filters=num_filters,
                                    filter_size=filter_size,
                                    param_attr=param_attr,
                                    bias_attr=bias_attr,
                                    act=act)
D
dzhwinter 已提交
325

326
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
327
    return pool_out
G
guosheng 已提交
328 329


F
Feiyu Chan 已提交
330
@deprecated(since="2.0.0", update_to="paddle.nn.functional.glu")
G
guosheng 已提交
331
def glu(input, dim=-1):
332
    r"""
C
cnn 已提交
333
	:api_attr: Static Graph
S
swtkiwi 已提交
334

335 336
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` ,
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` .
Y
Yibing Liu 已提交
337
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
338
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
339
    following:
G
guosheng 已提交
340 341 342 343 344

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
345
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
346
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
347

G
guosheng 已提交
348
    Args:
349 350
        input (Variable): The input variable which is a Tensor or LoDTensor.
                          The supported data types include float32, float64
Y
Yibing Liu 已提交
351 352
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
353
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
354 355

    Returns:
Y
Yibing Liu 已提交
356
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
357 358 359 360

    Examples:
        .. code-block:: python

361
            import paddle.fluid as fluid
C
cnn 已提交
362 363
            import paddle
            paddle.enable_static()
364

Y
Yibing Liu 已提交
365
            data = fluid.data(
Y
Yibing Liu 已提交
366 367 368
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
369
    """
370 371
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             "glu")
G
guosheng 已提交
372
    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
373 374
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
375
    return out
376 377


Y
ying 已提交
378 379 380
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
381
                                 num_heads=1,
Y
ying 已提交
382
                                 dropout_rate=0.):
383
    r"""
C
cnn 已提交
384
	:api_attr: Static Graph
S
swtkiwi 已提交
385

G
Guo Sheng 已提交
386
    This interface Multi-Head Attention using scaled dot product.
387
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
388 389 390
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
391

G
Guo Sheng 已提交
392
    .. math::
393

G
Guo Sheng 已提交
394 395 396
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
397

G
Guo Sheng 已提交
398
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
399

G
Guo Sheng 已提交
400 401 402 403 404 405
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
406

Y
ying 已提交
407
    Args:
G
Guo Sheng 已提交
408 409 410 411 412 413 414 415 416 417 418 419
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
420
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
421 422 423
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
424 425

    Returns:
G
Guo Sheng 已提交
426 427 428 429 430
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
431

Y
ying 已提交
432
    Raises:
433
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
434
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
435
        ValueError: The hidden size of queries and keys should be the same.
436
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
437 438
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
439

440 441 442
    Examples:
        .. code-block:: python

443
            import paddle.fluid as fluid
C
cnn 已提交
444 445
            import paddle
            paddle.enable_static()
446

G
Guo Sheng 已提交
447 448 449
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
450
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
451
            contexts.shape  # [3, 5, 10]
452
    """
453 454 455 456 457 458 459 460 461 462 463 464
    check_variable_and_dtype(queries, 'queries', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(keys, 'keys', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(values, 'values', ['float32', 'float64'],
                             "scaled_dot_product_attention")

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
            " keys.dtype = %s, values.dtype) = %s." %
465 466
            (convert_dtype(queries.dtype), convert_dtype(
                keys.dtype), convert_dtype(values.dtype)))
467

Y
ying 已提交
468 469
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
470 471 472 473
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
            "len(keys.shape) = %d, len(values.shape) = %d." %
            (len(queries.shape), len(keys.shape), len(values.shape)))
Y
ying 已提交
474 475 476

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
477 478 479
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
            % (queries.shape[-1], keys.shape[-1]))
Y
ying 已提交
480 481
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
482 483 484
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2]))
Y
ying 已提交
485 486 487 488 489 490 491 492 493
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
494
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
511 512 513 514 515 516 517 518
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
519 520
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
521
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
522 523 524
        dimensions.

        Args:
Y
ying 已提交
525 526
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
527 528

        Returns:
Y
ying 已提交
529 530
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
531
        """
Y
ying 已提交
532 533
        if num_heads == 1:
            return x
534

Y
ying 已提交
535
        hidden_size = x.shape[-1]
536 537 538
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
539 540 541
        reshaped = layers.reshape(x=x,
                                  shape=list(x.shape[:-1]) +
                                  [num_heads, hidden_size // num_heads])
542

T
tianshuo78520a 已提交
543
        # permute the dimensions into:
544 545 546 547
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
548
        """
T
tianshuo78520a 已提交
549
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
550 551 552 553 554 555 556 557 558 559 560
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

Y
ying 已提交
561
        if len(x.shape) == 3: return x
562 563 564
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
565
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
566 567 568 569 570 571
        return layers.reshape(x=trans_x,
                              shape=list(
                                  map(int, [
                                      trans_x.shape[0], trans_x.shape[1],
                                      trans_x.shape[2] * trans_x.shape[3]
                                  ])))
572

Y
ying 已提交
573 574 575 576 577
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
578 579

    key_dim_per_head = keys.shape[-1] // num_heads
580
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
581
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
582

583 584 585 586
    weights = layers.reshape(x=layers.reshape(x=product,
                                              shape=[-1, product.shape[-1]],
                                              act="softmax"),
                             shape=product.shape)
Y
ying 已提交
587
    if dropout_rate:
588 589 590
        weights = layers.dropout(weights,
                                 dropout_prob=dropout_rate,
                                 is_test=False)
Y
ying 已提交
591 592
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)