dist_fleet_ctr.py 12.9 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Distribute CTR model for test fleet api
"""
T
tangwei12 已提交
17

18
import os
T
tangwei12 已提交
19 20 21 22
import shutil
import tempfile
import time

23
import ctr_dataset_reader
1
123malin 已提交
24
import numpy as np
25
from test_dist_fleet_base import FleetDistRunnerBase, runtime_main
T
tangwei12 已提交
26

27 28
import paddle
import paddle.fluid as fluid
T
tangwei12 已提交
29

P
pangyoki 已提交
30 31
paddle.enable_static()

T
tangwei12 已提交
32 33 34 35 36
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


37 38 39 40 41 42 43 44 45 46 47
def fake_ctr_reader():
    def reader():
        for _ in range(1000):
            deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
            wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            yield [deep, wide, label]

    return reader


T
tangwei12 已提交
48
class TestDistCTR2x2(FleetDistRunnerBase):
49 50 51 52
    """
    For test CTR model, using Fleet api
    """

T
tangwei12 已提交
53
    def net(self, args, is_train=True, batch_size=4, lr=0.01):
54 55 56 57 58 59 60 61 62
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
63 64
        dnn_input_dim, lr_input_dim = int(1e5), int(1e5)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False,
        )
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False,
        )
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="int64",
            lod_level=0,
            append_batch_size=False,
        )
T
tangwei12 已提交
86 87 88

        datas = [dnn_data, lr_data, label]

89
        if args.reader == "pyreader":
T
tangwei12 已提交
90
            if is_train:
91 92 93 94 95 96
                self.reader = fluid.io.PyReader(
                    feed_list=datas,
                    capacity=64,
                    iterable=False,
                    use_double_buffer=False,
                )
T
tangwei12 已提交
97
            else:
98 99 100 101 102 103 104 105
                self.test_reader = fluid.io.PyReader(
                    feed_list=datas,
                    capacity=64,
                    iterable=False,
                    use_double_buffer=False,
                )

        # build dnn model
C
Chengmo 已提交
106
        dnn_layer_dims = [128, 128, 64, 32, 1]
T
tangwei12 已提交
107 108 109 110 111 112
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
113 114
                initializer=fluid.initializer.Constant(value=0.01),
            ),
1
123malin 已提交
115
            is_sparse=True,
116 117 118 119 120
            padding_idx=0,
        )
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum"
        )
T
tangwei12 已提交
121 122 123 124 125 126 127
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
128 129 130 131
                    initializer=fluid.initializer.Constant(value=0.01)
                ),
                name='dnn-fc-%d' % i,
            )
T
tangwei12 已提交
132 133 134 135 136 137 138 139 140
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
141 142
                initializer=fluid.initializer.Constant(value=0.01),
            ),
1
123malin 已提交
143
            is_sparse=True,
144 145
            padding_idx=0,
        )
T
tangwei12 已提交
146 147 148 149 150 151
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)
152

153 154 155
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(
            input=predict, label=label
        )
156

T
tangwei12 已提交
157
        cost = fluid.layers.cross_entropy(input=predict, label=label)
158
        avg_cost = paddle.mean(x=cost)
T
tangwei12 已提交
159 160

        self.feeds = datas
161
        self.train_file_path = ["fake1", "fake2"]
T
tangwei12 已提交
162 163 164 165 166 167
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
168
        dirname = dirname + '/dnn_plugin/'
T
tangwei12 已提交
169 170 171 172 173 174 175 176 177
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

178
    def do_distributed_testing(self, fleet):
T
tangwei12 已提交
179 180 181
        """
        do distributed
        """
182
        exe = self.get_executor()
T
tangwei12 已提交
183 184 185 186 187 188 189 190 191 192 193 194

        batch_size = 4
        test_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
        self.test_reader.decorate_sample_list_generator(test_reader)

        pass_start = time.time()
        batch_idx = 0

        self.test_reader.start()
        try:
            while True:
                batch_idx += 1
195 196 197 198
                loss_val = exe.run(
                    program=paddle.static.default_main_program(),
                    fetch_list=[self.avg_cost.name],
                )
T
tangwei12 已提交
199
                loss_val = np.mean(loss_val)
200
                message = "TEST ---> batch_idx: {} loss: {}\n".format(
201 202
                    batch_idx, loss_val
                )
T
tangwei12 已提交
203 204 205 206 207 208 209 210
                fleet.util.print_on_rank(message, 0)
        except fluid.core.EOFException:
            self.test_reader.reset()

        pass_time = time.time() - pass_start
        message = "Distributed Test Succeed, Using Time {}\n".format(pass_time)
        fleet.util.print_on_rank(message, 0)

1
123malin 已提交
211
    def do_pyreader_training(self, fleet):
212 213 214 215 216
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
217
        exe = self.get_executor()
218
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
219 220
        fleet.init_worker()

221 222
        batch_size = 4
        train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
1
123malin 已提交
223 224 225 226 227 228 229
        self.reader.decorate_sample_list_generator(train_reader)

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
230 231 232 233
                    loss_val = exe.run(
                        program=fluid.default_main_program(),
                        fetch_list=[self.avg_cost.name],
                    )
1
123malin 已提交
234
                    loss_val = np.mean(loss_val)
235
                    # TODO(randomly fail)
236
                    #   reduce_output = fleet.util.all_reduce(
237
                    #       np.array(loss_val), mode="sum")
238
                    #   loss_all_trainer = fleet.util.all_gather(float(loss_val))
239
                    #   loss_val = float(reduce_output) / len(loss_all_trainer)
240
                    message = "TRAIN ---> pass: {} loss: {}\n".format(
241 242
                        epoch_id, loss_val
                    )
243
                    fleet.util.print_on_rank(message, 0)
244

1
123malin 已提交
245 246 247 248
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

T
tangwei12 已提交
249 250 251 252
        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

1
123malin 已提交
253
        model_dir = tempfile.mkdtemp()
254 255 256
        fleet.save_inference_model(
            exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost
        )
257 258
        if fleet.is_first_worker():
            self.check_model_right(model_dir)
1
123malin 已提交
259 260
        shutil.rmtree(model_dir)

261
    def do_dataset_training_queuedataset(self, fleet):
262
        train_file_list = ctr_dataset_reader.prepare_fake_data()
1
123malin 已提交
263

264
        exe = self.get_executor()
265
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
266
        fleet.init_worker()
1
123malin 已提交
267 268 269

        thread_num = 2
        batch_size = 128
270
        filelist = train_file_list
T
tangwei12 已提交
271 272

        # config dataset
273
        dataset = paddle.distributed.QueueDataset()
T
tangwei12 已提交
274
        pipe_command = 'python ctr_dataset_reader.py'
275

276 277 278 279 280 281
        dataset.init(
            batch_size=batch_size,
            use_var=self.feeds,
            pipe_command=pipe_command,
            thread_num=thread_num,
        )
T
tangwei12 已提交
282 283 284

        dataset.set_filelist(filelist)

285
        for epoch_id in range(1):
T
tangwei12 已提交
286 287
            pass_start = time.time()
            dataset.set_filelist(filelist)
288 289 290 291 292 293 294 295
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
                print_period=2,
                debug=int(os.getenv("Debug", "0")),
            )
296 297
            pass_time = time.time() - pass_start

298 299
        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
300 301 302 303 304 305
            fleet.save_inference_model(
                exe,
                model_dir,
                [feed.name for feed in self.feeds],
                self.avg_cost,
            )
306 307
            if fleet.is_first_worker():
                self.check_model_right(model_dir)
308
            shutil.rmtree(model_dir)
309

T
tangwei12 已提交
310 311 312 313
        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    def do_dataset_training(self, fleet):
        train_file_list = ctr_dataset_reader.prepare_fake_data()

        exe = self.get_executor()
        exe.run(fluid.default_startup_program())
        fleet.init_worker()

        thread_num = 2
        batch_size = 128
        filelist = train_file_list

        # config dataset
        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_use_var(self.feeds)
        dataset.set_batch_size(128)
        dataset.set_thread(2)
        dataset.set_filelist(filelist)
        dataset.set_pipe_command('python ctr_dataset_reader.py')
        dataset.load_into_memory()

334
        dataset.global_shuffle(fleet, 12)  # TODO: thread configure
335 336 337 338 339 340 341 342
        shuffle_data_size = dataset.get_shuffle_data_size(fleet)
        local_data_size = dataset.get_shuffle_data_size()
        data_size_list = fleet.util.all_gather(local_data_size)
        print('after global_shuffle data_size_list: ', data_size_list)
        print('after global_shuffle data_size: ', shuffle_data_size)

        for epoch_id in range(1):
            pass_start = time.time()
343 344 345 346 347 348 349 350
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
                print_period=2,
                debug=int(os.getenv("Debug", "0")),
            )
351 352 353 354 355
            pass_time = time.time() - pass_start
        dataset.release_memory()

        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
356 357 358 359 360 361
            fleet.save_inference_model(
                exe,
                model_dir,
                [feed.name for feed in self.feeds],
                self.avg_cost,
            )
362 363 364
            fleet.load_inference_model(model_dir, mode=0)
            if fleet.is_first_worker():
                self.check_model_right(model_dir)
365 366 367 368 369
            shutil.rmtree(model_dir)

        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)
370
            fleet.load_model(dirname, mode=0)
371

Z
zhaocaibei123 已提交
372 373 374 375
        cache_dirname = os.getenv("SAVE_CACHE_DIRNAME", None)
        if cache_dirname:
            fleet.save_cache_model(cache_dirname)

376 377
        dense_param_dirname = os.getenv("SAVE_DENSE_PARAM_DIRNAME", None)
        if dense_param_dirname:
378 379 380 381 382 383
            fleet.save_dense_params(
                exe,
                dense_param_dirname,
                fluid.global_scope(),
                fluid.default_main_program(),
            )
384 385 386 387 388 389 390 391 392 393 394

        save_one_table_dirname = os.getenv("SAVE_ONE_TABLE_DIRNAME", None)
        if save_one_table_dirname:
            fleet.save_one_table(0, save_one_table_dirname, 0)
            fleet.load_one_table(0, save_one_table_dirname, 0)

        patch_dirname = os.getenv("SAVE_PATCH_DIRNAME", None)
        if patch_dirname:
            fleet.save_persistables(exe, patch_dirname, None, 5)
            fleet.check_save_pre_patch_done()

395

T
tangwei12 已提交
396 397
if __name__ == "__main__":
    runtime_main(TestDistCTR2x2)