dist_fleet_ctr.py 12.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Distribute CTR model for test fleet api
"""
T
tangwei12 已提交
17 18 19 20 21 22 23

from __future__ import print_function

import shutil
import tempfile
import time

1
123malin 已提交
24
import paddle
T
tangwei12 已提交
25 26
import paddle.fluid as fluid
import os
1
123malin 已提交
27
import numpy as np
T
tangwei12 已提交
28 29 30

import ctr_dataset_reader
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
31
from paddle.distributed.fleet.utils.ps_util import DistributedInfer
T
tangwei12 已提交
32
import paddle.distributed.fleet as fleet
T
tangwei12 已提交
33

P
pangyoki 已提交
34 35
paddle.enable_static()

T
tangwei12 已提交
36 37 38 39 40
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


41
def fake_ctr_reader():
42

43 44 45 46 47 48 49 50 51 52
    def reader():
        for _ in range(1000):
            deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
            wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            yield [deep, wide, label]

    return reader


T
tangwei12 已提交
53
class TestDistCTR2x2(FleetDistRunnerBase):
54 55 56 57
    """
    For test CTR model, using Fleet api
    """

T
tangwei12 已提交
58
    def net(self, args, is_train=True, batch_size=4, lr=0.01):
59 60 61 62 63 64 65 66 67
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
68 69
        dnn_input_dim, lr_input_dim = int(1e5), int(1e5)

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        dnn_data = fluid.layers.data(name="dnn_data",
                                     shape=[-1, 1],
                                     dtype="int64",
                                     lod_level=1,
                                     append_batch_size=False)
        lr_data = fluid.layers.data(name="lr_data",
                                    shape=[-1, 1],
                                    dtype="int64",
                                    lod_level=1,
                                    append_batch_size=False)
        label = fluid.layers.data(name="click",
                                  shape=[-1, 1],
                                  dtype="int64",
                                  lod_level=0,
                                  append_batch_size=False)
T
tangwei12 已提交
85 86 87

        datas = [dnn_data, lr_data, label]

88
        if args.reader == "pyreader":
T
tangwei12 已提交
89
            if is_train:
90 91 92 93
                self.reader = fluid.io.PyReader(feed_list=datas,
                                                capacity=64,
                                                iterable=False,
                                                use_double_buffer=False)
T
tangwei12 已提交
94
            else:
95 96 97 98 99
                self.test_reader = fluid.io.PyReader(feed_list=datas,
                                                     capacity=64,
                                                     iterable=False,
                                                     use_double_buffer=False)

T
tangwei12 已提交
100 101

# build dnn model
C
Chengmo 已提交
102
        dnn_layer_dims = [128, 128, 64, 32, 1]
T
tangwei12 已提交
103 104 105 106 107 108 109
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
1
123malin 已提交
110 111
            is_sparse=True,
            padding_idx=0)
112 113
        dnn_pool = fluid.layers.sequence_pool(input=dnn_embedding,
                                              pool_type="sum")
T
tangwei12 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
1
123malin 已提交
133 134
            is_sparse=True,
            padding_idx=0)
T
tangwei12 已提交
135 136 137 138 139 140
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)
141

T
tangwei12 已提交
142 143
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                              label=label)
144

T
tangwei12 已提交
145 146 147 148
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        self.feeds = datas
149
        self.train_file_path = ["fake1", "fake2"]
T
tangwei12 已提交
150 151 152 153 154 155
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
156
        dirname = dirname + '/dnn_plugin/'
T
tangwei12 已提交
157 158 159 160 161 162 163 164 165
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

166
    def do_distributed_testing(self, fleet):
T
tangwei12 已提交
167 168 169
        """
        do distributed
        """
170
        exe = self.get_executor()
T
tangwei12 已提交
171 172 173 174 175 176 177 178 179 180 181 182

        batch_size = 4
        test_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
        self.test_reader.decorate_sample_list_generator(test_reader)

        pass_start = time.time()
        batch_idx = 0

        self.test_reader.start()
        try:
            while True:
                batch_idx += 1
183
                loss_val = exe.run(program=paddle.static.default_main_program(),
T
tangwei12 已提交
184 185
                                   fetch_list=[self.avg_cost.name])
                loss_val = np.mean(loss_val)
186 187
                message = "TEST ---> batch_idx: {} loss: {}\n".format(
                    batch_idx, loss_val)
T
tangwei12 已提交
188 189 190 191 192 193 194 195
                fleet.util.print_on_rank(message, 0)
        except fluid.core.EOFException:
            self.test_reader.reset()

        pass_time = time.time() - pass_start
        message = "Distributed Test Succeed, Using Time {}\n".format(pass_time)
        fleet.util.print_on_rank(message, 0)

1
123malin 已提交
196
    def do_pyreader_training(self, fleet):
197 198 199 200 201
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
202
        exe = self.get_executor()
203
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
204 205
        fleet.init_worker()

206 207
        batch_size = 4
        train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
1
123malin 已提交
208 209 210 211 212 213 214
        self.reader.decorate_sample_list_generator(train_reader)

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
215
                    loss_val = exe.run(program=fluid.default_main_program(),
1
123malin 已提交
216 217
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
218
                    # TODO(randomly fail)
219
                    #   reduce_output = fleet.util.all_reduce(
220
                    #       np.array(loss_val), mode="sum")
221
                    #   loss_all_trainer = fleet.util.all_gather(float(loss_val))
222
                    #   loss_val = float(reduce_output) / len(loss_all_trainer)
223 224
                    message = "TRAIN ---> pass: {} loss: {}\n".format(
                        epoch_id, loss_val)
225
                    fleet.util.print_on_rank(message, 0)
226

1
123malin 已提交
227 228 229 230
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

T
tangwei12 已提交
231 232 233 234
        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

1
123malin 已提交
235
        model_dir = tempfile.mkdtemp()
236 237 238
        fleet.save_inference_model(exe, model_dir,
                                   [feed.name for feed in self.feeds],
                                   self.avg_cost)
1
123malin 已提交
239 240 241
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)

242
    def do_dataset_training_queuedataset(self, fleet):
243
        train_file_list = ctr_dataset_reader.prepare_fake_data()
1
123malin 已提交
244

245
        exe = self.get_executor()
246
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
247
        fleet.init_worker()
1
123malin 已提交
248 249 250

        thread_num = 2
        batch_size = 128
251
        filelist = train_file_list
T
tangwei12 已提交
252 253

        # config dataset
254
        dataset = paddle.distributed.QueueDataset()
T
tangwei12 已提交
255
        pipe_command = 'python ctr_dataset_reader.py'
256

257 258 259 260
        dataset.init(batch_size=batch_size,
                     use_var=self.feeds,
                     pipe_command=pipe_command,
                     thread_num=thread_num)
T
tangwei12 已提交
261 262 263

        dataset.set_filelist(filelist)

264
        for epoch_id in range(1):
T
tangwei12 已提交
265 266
            pass_start = time.time()
            dataset.set_filelist(filelist)
267 268 269 270 271 272
            exe.train_from_dataset(program=fluid.default_main_program(),
                                   dataset=dataset,
                                   fetch_list=[self.avg_cost],
                                   fetch_info=["cost"],
                                   print_period=2,
                                   debug=int(os.getenv("Debug", "0")))
273 274
            pass_time = time.time() - pass_start

275 276 277 278 279 280 281
        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)
282

T
tangwei12 已提交
283 284 285 286
        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def do_dataset_training(self, fleet):
        train_file_list = ctr_dataset_reader.prepare_fake_data()

        exe = self.get_executor()
        exe.run(fluid.default_startup_program())
        fleet.init_worker()

        thread_num = 2
        batch_size = 128
        filelist = train_file_list

        # config dataset
        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_use_var(self.feeds)
        dataset.set_batch_size(128)
        dataset.set_thread(2)
        dataset.set_filelist(filelist)
        dataset.set_pipe_command('python ctr_dataset_reader.py')
        dataset.load_into_memory()

        dataset.global_shuffle(fleet, 12)  ##TODO: thread configure
        shuffle_data_size = dataset.get_shuffle_data_size(fleet)
        local_data_size = dataset.get_shuffle_data_size()
        data_size_list = fleet.util.all_gather(local_data_size)
        print('after global_shuffle data_size_list: ', data_size_list)
        print('after global_shuffle data_size: ', shuffle_data_size)

        for epoch_id in range(1):
            pass_start = time.time()
316 317 318 319 320 321
            exe.train_from_dataset(program=fluid.default_main_program(),
                                   dataset=dataset,
                                   fetch_list=[self.avg_cost],
                                   fetch_info=["cost"],
                                   print_period=2,
                                   debug=int(os.getenv("Debug", "0")))
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            pass_time = time.time() - pass_start
        dataset.release_memory()

        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)

        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

Z
zhaocaibei123 已提交
337 338 339 340
        cache_dirname = os.getenv("SAVE_CACHE_DIRNAME", None)
        if cache_dirname:
            fleet.save_cache_model(cache_dirname)

T
tangwei12 已提交
341 342
if __name__ == "__main__":
    runtime_main(TestDistCTR2x2)