test_parallel_executor.py 33.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15
import numpy as np
Y
Yu Yang 已提交
16
import unittest
Y
Yu Yang 已提交
17

Y
Yu Yang 已提交
18
import paddle.fluid as fluid
19 20 21
import paddle
import paddle.dataset.mnist as mnist
import paddle.dataset.wmt16 as wmt16
Y
Yu Yang 已提交
22 23


X
Xin Pan 已提交
24 25 26 27 28
def simple_fc_net(use_feed):
    if use_feed:
        img = fluid.layers.data(name='image', shape=[784], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    else:
J
JiayiFeng 已提交
29 30
        reader = fluid.layers.open_files(
            filenames=['./mnist.recordio'],
X
Xin Pan 已提交
31 32
            shapes=[[-1, 784], [-1, 1]],
            lod_levels=[0, 0],
J
JiayiFeng 已提交
33 34 35 36
            dtypes=['float32', 'int64'],
            thread_num=1,
            for_parallel=True)
        reader = fluid.layers.io.double_buffer(reader)
X
Xin Pan 已提交
37
        img, label = fluid.layers.read_file(reader)
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    hidden = img
    for _ in xrange(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


X
Xin Pan 已提交
52 53 54 55 56
def fc_with_batchnorm(use_feed):
    if use_feed:
        img = fluid.layers.data(name='image', shape=[784], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    else:
J
JiayiFeng 已提交
57 58
        reader = fluid.layers.open_files(
            filenames=['mnist.recordio'],
X
Xin Pan 已提交
59 60
            shapes=[[-1, 784], [-1, 1]],
            lod_levels=[0, 0],
J
JiayiFeng 已提交
61 62 63 64
            dtypes=['float32', 'int64'],
            thread_num=1,
            for_parallel=True)
        reader = fluid.layers.io.double_buffer(reader)
X
Xin Pan 已提交
65 66
        img, label = fluid.layers.read_file(reader)

67
    hidden = img
Y
Yu Yang 已提交
68
    for _ in xrange(1):
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))

        hidden = fluid.layers.batch_norm(input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def squeeze_excitation(input, num_channels, reduction_ratio):
    # pool = fluid.layers.pool2d(
    #    input=input, pool_size=0, pool_type='avg', global_pooling=True)
    conv = input
    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)

    squeeze = fluid.layers.fc(input=pool,
                              size=num_channels / reduction_ratio,
                              act='relu')
    excitation = fluid.layers.fc(input=squeeze,
                                 size=num_channels,
                                 act='sigmoid')
    scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
    return scale


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) / 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1)


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1]
    if ch_in != ch_out:
        if stride == 1:
            filter_size = 1
        else:
            filter_size = 3
        return conv_bn_layer(input, ch_out, filter_size, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
    # The number of first 1x1 convolutional channels for each bottleneck build block
    # was halved to reduce the compution cost.
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters * 2,
        filter_size=3,
        stride=stride,
        groups=cardinality,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
    scale = squeeze_excitation(
        input=conv2,
        num_channels=num_filters * 2,
        reduction_ratio=reduction_ratio)

    short = shortcut(input, num_filters * 2, stride)

    return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


X
Xin Pan 已提交
153
def SE_ResNeXt50Small(batch_size=2, use_feed=False):
X
Xin Pan 已提交
154 155
    assert not use_feed, "SE_ResNeXt doesn't support feed yet"

Y
Yu Yang 已提交
156 157 158 159
    img = fluid.layers.fill_constant(
        shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0)
    label = fluid.layers.fill_constant(
        shape=[batch_size, 1], dtype='int64', value=0.0)
Y
Yu Yang 已提交
160 161

    conv = conv_bn_layer(
162
        input=img, num_filters=16, filter_size=3, stride=2, act='relu')
Y
Yu Yang 已提交
163
    conv = conv_bn_layer(
164
        input=conv, num_filters=16, filter_size=3, stride=1, act='relu')
Y
Yu Yang 已提交
165
    conv = conv_bn_layer(
166
        input=conv, num_filters=16, filter_size=3, stride=1, act='relu')
Y
Yu Yang 已提交
167 168 169
    conv = fluid.layers.pool2d(
        input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

X
Xin Pan 已提交
170
    cardinality = 32
Y
Yu Yang 已提交
171
    reduction_ratio = 16
X
Xin Pan 已提交
172
    depth = [3, 4, 6, 3]
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    num_filters = [128, 256, 512, 1024]

    for block in range(len(depth)):
        for i in range(depth[block]):
            conv = bottleneck_block(
                input=conv,
                num_filters=num_filters[block],
                stride=2 if i == 0 and block != 0 else 1,
                cardinality=cardinality,
                reduction_ratio=reduction_ratio)

    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)
    dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2)
    # Classifier layer:
    prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
196 197 198
import time


Y
Yu Yang 已提交
199
class TestParallelExecutorBase(unittest.TestCase):
Y
Yu Yang 已提交
200 201 202
    def check_network_convergence(self,
                                  method,
                                  memory_opt=True,
J
JiayiFeng 已提交
203
                                  iter=50,
X
Xin Pan 已提交
204
                                  batch_size=None,
X
Xin Pan 已提交
205
                                  allow_op_delay=False,
206
                                  feed_dict=None,
J
stash  
JiayiFeng 已提交
207
                                  seed=None,
C
chengduoZH 已提交
208 209
                                  use_parallel_executor=True,
                                  balance_parameter_opt_between_cards=False):
J
JiayiFeng 已提交
210 211 212 213 214 215 216 217 218 219 220
        def run_executor(exe, feed, fetch_list, program=None):
            if isinstance(exe, fluid.ParallelExecutor):
                res = exe.run(fetch_list=fetch_list, feed=feed)
            elif isinstance(exe, fluid.Executor):
                if program is None:
                    program = fluid.default_main_program()
                res = exe.run(program=program, feed=feed, fetch_list=fetch_list)
            else:
                raise ValueError('Unkown type exe')
            return res

Y
Yu Yang 已提交
221 222
        main = fluid.Program()
        startup = fluid.Program()
Y
Yu Yang 已提交
223
        startup.random_seed = 1  # Fix random seed
Y
Yu Yang 已提交
224
        with fluid.program_guard(main, startup):
F
fengjiayi 已提交
225
            if seed is not None:
J
stash  
JiayiFeng 已提交
226
                startup.random_seed = seed
Y
Yu Yang 已提交
227
            loss = method(use_feed=feed_dict is not None)
Y
Yu Yang 已提交
228 229 230 231
            adam = fluid.optimizer.Adam()
            adam.minimize(loss)
            if memory_opt:
                fluid.memory_optimize(main)
232 233 234
            place = fluid.CUDAPlace(0)
            startup_exe = fluid.Executor(place)
            startup_exe.run(startup)
Y
yuyang18 已提交
235 236
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.allow_op_delay = allow_op_delay
Y
yuyang18 已提交
237 238 239

            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce if balance_parameter_opt_between_cards else fluid.BuildStrategy.ReduceStrategy.AllReduce
240

F
fengjiayi 已提交
241
            if use_parallel_executor:
242
                exe = fluid.ParallelExecutor(
C
chengduoZH 已提交
243 244
                    True,
                    loss_name=loss.name,
Y
yuyang18 已提交
245 246
                    exec_strategy=exec_strategy,
                    build_strategy=build_strategy)
F
fengjiayi 已提交
247 248 249
            else:
                exe = fluid.Executor(place=place)

Y
Yu Yang 已提交
250 251 252
            if batch_size is not None:
                batch_size *= fluid.core.get_cuda_device_count()
            begin = time.time()
J
JiayiFeng 已提交
253 254
            first_loss, = run_executor(
                exe=exe, feed=feed_dict, fetch_list=[loss.name])
C
chengduoZH 已提交
255
            first_loss = np.array(first_loss)
Y
Yu Yang 已提交
256 257

            for i in xrange(iter):
J
JiayiFeng 已提交
258
                run_executor(exe=exe, feed=feed_dict, fetch_list=[])
Y
Yu Yang 已提交
259

J
JiayiFeng 已提交
260 261
            last_loss, = run_executor(
                exe=exe, feed=feed_dict, fetch_list=[loss.name])
Y
Yu Yang 已提交
262 263 264 265 266 267
            end = time.time()

            if batch_size is not None:
                print "%.4f Instance per second" % (
                    (batch_size * iter + 2) / (end - begin))

C
chengduoZH 已提交
268
            last_loss = np.array(last_loss)
Y
Yu Yang 已提交
269 270

            print first_loss, last_loss
Y
Yu Yang 已提交
271
            # self.assertGreater(first_loss[0], last_loss[0])
F
fengjiayi 已提交
272
            return first_loss, last_loss
Y
Yu Yang 已提交
273 274 275


class TestMNIST(TestParallelExecutorBase):
276 277
    @classmethod
    def setUpClass(cls):
Y
Stash  
Yu Yang 已提交
278 279
        # Convert mnist to recordio file
        with fluid.program_guard(fluid.Program(), fluid.Program()):
280
            reader = paddle.batch(mnist.train(), batch_size=4)
Y
Stash  
Yu Yang 已提交
281 282 283 284 285 286 287 288 289 290 291
            feeder = fluid.DataFeeder(
                feed_list=[  # order is image and label
                    fluid.layers.data(
                        name='image', shape=[784]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            fluid.recordio_writer.convert_reader_to_recordio_file(
                './mnist.recordio', reader, feeder)

C
chengduoZH 已提交
292
    def check_simple_fc_convergence(self, balance_parameter_opt_between_cards):
Y
Yu Yang 已提交
293
        self.check_network_convergence(simple_fc_net)
X
Xin Pan 已提交
294
        self.check_network_convergence(simple_fc_net, allow_op_delay=True)
Y
Yu Yang 已提交
295

C
chengduoZH 已提交
296 297
        img = np.zeros(shape=[32, 784], dtype='float32')
        label = np.ones(shape=[32, 1], dtype='int64')
X
Xin Pan 已提交
298
        self.check_network_convergence(
C
chengduoZH 已提交
299 300 301 302 303
            simple_fc_net,
            feed_dict={"image": img,
                       "label": label},
            balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
        )
C
chengduoZH 已提交
304

305
    def test_simple_fc(self):
C
chengduoZH 已提交
306
        self.check_simple_fc_convergence(False)
X
Xin Pan 已提交
307

C
chengduoZH 已提交
308 309 310 311 312
    def test_simple_fc_with_new_strategy(self):
        self.check_simple_fc_convergence(True)

    def check_simple_fc_parallel_accuracy(self,
                                          balance_parameter_opt_between_cards):
C
chengduoZH 已提交
313 314
        img = np.zeros(shape=[32, 784], dtype='float32')
        label = np.ones(shape=[32, 1], dtype='int64')
J
JiayiFeng 已提交
315 316 317 318 319 320 321 322 323 324 325
        single_first_loss, single_last_loss = self.check_network_convergence(
            method=simple_fc_net,
            seed=1000,
            feed_dict={"image": img,
                       "label": label},
            use_parallel_executor=False)
        parallel_first_loss, parallel_last_loss = self.check_network_convergence(
            method=simple_fc_net,
            seed=1000,
            feed_dict={"image": img,
                       "label": label},
C
chengduoZH 已提交
326 327 328
            use_parallel_executor=True,
            balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
        )
J
JiayiFeng 已提交
329 330 331 332 333

        for p_f in parallel_first_loss:
            self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
        for p_l in parallel_last_loss:
            self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
F
fengjiayi 已提交
334

335
    def test_simple_fc_parallel_accuracy(self):
C
chengduoZH 已提交
336 337 338 339
        self.check_simple_fc_parallel_accuracy(False)

    def test_simple_fc_parallel_accuracy_with_new_strategy(self):
        self.check_simple_fc_parallel_accuracy(True)
C
chengduoZH 已提交
340

C
chengduoZH 已提交
341 342
    def check_batchnorm_fc_convergence(self,
                                       balance_parameter_opt_between_cards):
Y
Yu Yang 已提交
343
        self.check_network_convergence(fc_with_batchnorm)
C
chengduoZH 已提交
344 345
        img = np.zeros(shape=[32, 784], dtype='float32')
        label = np.ones(shape=[32, 1], dtype='int64')
X
Xin Pan 已提交
346
        self.check_network_convergence(
C
chengduoZH 已提交
347 348 349 350 351
            fc_with_batchnorm,
            feed_dict={"image": img,
                       "label": label},
            balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
        )
C
chengduoZH 已提交
352

353
    def test_batchnorm_fc(self):
C
chengduoZH 已提交
354 355 356 357
        self.check_batchnorm_fc_convergence(False)

    def test_batchnorm_fc_with_new_strategy(self):
        self.check_batchnorm_fc_convergence(True)
Y
Yu Yang 已提交
358 359 360


class TestResnet(TestParallelExecutorBase):
Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    # @classmethod
    # def setUpClass(cls):
    #     # import os
    #     # if os.path.exists('./flowers.recordio'):
    #     #     return
    #     with fluid.program_guard(fluid.Program(), fluid.Program()):
    #         reader = paddle.batch(flowers.train(), batch_size=4)
    #         feeder = fluid.DataFeeder(
    #             feed_list=[
    #                 fluid.layers.data(
    #                     name='image', shape=[3, 224, 224]),
    #                 fluid.layers.data(
    #                     name='label', shape=[1], dtype='int64'),
    #             ],
    #             place=fluid.CPUPlace())
    #         fluid.recordio_writer.convert_reader_to_recordio_file(
    #             "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress)
Y
Yu Yang 已提交
378

C
chengduoZH 已提交
379
    def check_resnet_convergence(self, balance_parameter_opt_between_cards):
Y
Yu Yang 已提交
380
        import functools
381
        batch_size = 2
Y
Yu Yang 已提交
382 383
        self.check_network_convergence(
            functools.partial(
X
Xin Pan 已提交
384
                SE_ResNeXt50Small, batch_size=batch_size),
Y
Yu Yang 已提交
385
            iter=20,
C
chengduoZH 已提交
386 387 388
            batch_size=batch_size,
            balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
        )
C
chengduoZH 已提交
389

390
    def test_resnet(self):
C
chengduoZH 已提交
391 392 393 394
        self.check_resnet_convergence(False)

    def test_resnet_with_new_strategy(self):
        self.check_resnet_convergence(True)
Y
Yu Yang 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517


class ModelHyperParams(object):
    # Dictionary size for source and target language. This model directly uses
    # paddle.dataset.wmt16 in which <bos>, <eos> and <unk> token has
    # alreay been added, but the <pad> token is not added. Transformer requires
    # sequences in a mini-batch are padded to have the same length. A <pad> token is
    # added into the original dictionary in paddle.dateset.wmt16.

    # size of source word dictionary.
    src_vocab_size = 10000
    # index for <pad> token in source language.
    src_pad_idx = src_vocab_size

    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <pad> token in target language.
    trg_pad_idx = trg_vocab_size

    # position value corresponding to the <pad> token.
    pos_pad_idx = 0

    # max length of sequences. It should plus 1 to include position
    # padding token for position encoding.
    max_length = 50

    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.

    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
    d_inner_hid = 1024
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
    dropout = 0.1


def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias. Then, convert the numpy
    data to tensors and return a dict mapping names to tensors.
    """

    def __pad_batch_data(insts,
                         pad_idx,
                         is_target=False,
                         return_pos=True,
                         return_attn_bias=True,
                         return_max_len=True):
        """
        Pad the instances to the max sequence length in batch, and generate the
        corresponding position data and attention bias.
        """
        return_list = []
        max_len = max(len(inst) for inst in insts)
        inst_data = np.array(
            [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_data.astype("int64").reshape([-1, 1])]
        if return_pos:
            inst_pos = np.array([[
                pos_i + 1 if w_i != pad_idx else 0
                for pos_i, w_i in enumerate(inst)
            ] for inst in inst_data])

            return_list += [inst_pos.astype("int64").reshape([-1, 1])]
        if return_attn_bias:
            if is_target:
                # This is used to avoid attention on paddings and subsequent
                # words.
                slf_attn_bias_data = np.ones((inst_data.shape[0], max_len,
                                              max_len))
                slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                    [-1, 1, max_len, max_len])
                slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                             [1, n_head, 1, 1]) * [-1e9]
            else:
                # This is used to avoid attention on paddings.
                slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                               (max_len - len(inst))
                                               for inst in insts])
                slf_attn_bias_data = np.tile(
                    slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                    [1, n_head, max_len, 1])
            return_list += [slf_attn_bias_data.astype("float32")]
        if return_max_len:
            return_list += [max_len]
        return return_list if len(return_list) > 1 else return_list[0]

    def data_to_tensor(data_list, name_list, input_dict, place):
        assert len(data_list) == len(name_list)
        for i in range(len(name_list)):
            tensor = fluid.LoDTensor()
            tensor.set(data_list[i], place)
            input_dict[name_list[i]] = tensor

    src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, is_target=False)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, is_target=True)
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
    lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False,
                                False, False, False)
    lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])

    return [
        src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias,
        trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
    ]


import transformer_model


X
Xin Pan 已提交
518 519
def transformer(use_feed):
    assert not use_feed, "transfomer doesn't support feed yet"
Y
Yu Yang 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    return transformer_model.transformer(
        ModelHyperParams.src_vocab_size + 1,
        ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer, ModelHyperParams.n_head,
        ModelHyperParams.d_key, ModelHyperParams.d_value,
        ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
        ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)


class TestTransformer(TestParallelExecutorBase):
    @classmethod
    def setUpClass(cls):
        reader = paddle.batch(
            wmt16.train(ModelHyperParams.src_vocab_size,
                        ModelHyperParams.trg_vocab_size),
            batch_size=transformer_model.batch_size)

        with fluid.recordio_writer.create_recordio_writer(
                "./wmt16.recordio") as writer:
            for batch in reader():
                for tensor in prepare_batch_input(
                        batch, ModelHyperParams.src_pad_idx,
                        ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head):
                    t = fluid.LoDTensor()
                    t.set(tensor, fluid.CPUPlace())
                    writer.append_tensor(t)
                writer.complete_append_tensor()

Y
Yu Yang 已提交
549
    @unittest.skip("transformer is buggy in multi gpu")
Y
Yu Yang 已提交
550 551
    def test_main(self):
        self.check_network_convergence(transformer)
552 553 554


class ParallelExecutorTestingDuringTraining(unittest.TestCase):
Y
yuyang18 已提交
555
    def check_network_convergence(self, build_strategy=None):
556 557 558 559 560 561
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net(True)
            test_program = main.clone(for_test=True)

D
Dang Qingqing 已提交
562
            opt = fluid.optimizer.SGD(learning_rate=0.001)
563 564 565
            opt.minimize(loss)

            batch_size = 32
C
chengduoZH 已提交
566 567
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
568 569 570 571 572 573 574

            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

            train_exe = fluid.ParallelExecutor(
C
chengduoZH 已提交
575 576 577
                use_cuda=True,
                loss_name=loss.name,
                main_program=main,
Y
yuyang18 已提交
578
                build_strategy=build_strategy)
579 580 581 582

            test_exe = fluid.ParallelExecutor(
                use_cuda=True,
                main_program=test_program,
C
chengduoZH 已提交
583
                share_vars_from=train_exe,
Y
yuyang18 已提交
584
                build_strategy=build_strategy)
585 586

            for i in xrange(5):
J
stash  
JiayiFeng 已提交
587
                test_loss, = test_exe.run([loss.name], feed=feed_dict)
C
chengduoZH 已提交
588
                test_loss = np.array(test_loss)
589

J
stash  
JiayiFeng 已提交
590
                train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduoZH 已提交
591
                train_loss = np.array(train_loss)
D
Dang Qingqing 已提交
592
                self.assertTrue(
C
chengduoZH 已提交
593
                    np.allclose(
D
Dang Qingqing 已提交
594 595 596
                        train_loss, test_loss, atol=1e-8),
                    "Train loss: " + str(train_loss) + "\n Test loss:" +
                    str(test_loss))
Y
Yu Yang 已提交
597

C
chengduoZH 已提交
598
    def test_parallel_testing(self):
Y
yuyang18 已提交
599 600 601
        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
        self.check_network_convergence(build_strategy)
C
chengduoZH 已提交
602 603

    def test_parallel_testing_with_new_strategy(self):
Y
yuyang18 已提交
604 605 606
        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        self.check_network_convergence(build_strategy)
C
chengduoZH 已提交
607

Y
Yu Yang 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

import paddle.dataset.conll05 as conll05
import paddle.fluid as fluid

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_dict_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3
embedding_name = 'emb'


def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
Y
yuyang18 已提交
626
            is_sparse, **ignored):
Y
Yu Yang 已提交
627 628 629
    # 8 features
    predicate_embedding = fluid.layers.embedding(
        input=predicate,
C
chengduoZH 已提交
630
        is_sparse=is_sparse,
Y
Yu Yang 已提交
631 632 633 634 635
        size=[pred_dict_len, word_dim],
        dtype='float32',
        param_attr='vemb')

    mark_embedding = fluid.layers.embedding(
C
chengduoZH 已提交
636 637 638 639
        input=mark,
        is_sparse=is_sparse,
        size=[mark_dict_len, mark_dim],
        dtype='float32')
Y
Yu Yang 已提交
640 641 642 643 644

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
        fluid.layers.embedding(
            size=[word_dict_len, word_dim],
C
chengduoZH 已提交
645
            is_sparse=is_sparse,
Y
Yu Yang 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
            input=x,
            param_attr=fluid.ParamAttr(
                name=embedding_name, trainable=False)) for x in word_input
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0_layers = [
        fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
        for emb in emb_layers
    ]

    hidden_0 = fluid.layers.sums(input=hidden_0_layers)

    lstm_0 = fluid.layers.dynamic_lstm(
        input=hidden_0,
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')

    # stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = fluid.layers.sums(input=[
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
        ])

        lstm = fluid.layers.dynamic_lstm(
            input=mix_hidden,
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))

        input_tmp = [mix_hidden, lstm]

    feature_out = fluid.layers.sums(input=[
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
    ])

    return feature_out


class TestCRFModel(unittest.TestCase):
Y
yuyang18 已提交
695
    def check_network_convergence(self, is_sparse, build_strategy=None):
Y
Yu Yang 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            word = fluid.layers.data(
                name='word_data', shape=[1], dtype='int64', lod_level=1)
            predicate = fluid.layers.data(
                name='verb_data', shape=[1], dtype='int64', lod_level=1)
            ctx_n2 = fluid.layers.data(
                name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
            ctx_n1 = fluid.layers.data(
                name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
            ctx_0 = fluid.layers.data(
                name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
            ctx_p1 = fluid.layers.data(
                name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
            ctx_p2 = fluid.layers.data(
                name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
            mark = fluid.layers.data(
                name='mark_data', shape=[1], dtype='int64', lod_level=1)
C
chengduoZH 已提交
715

Y
Yu Yang 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
            feature_out = db_lstm(**locals())
            target = fluid.layers.data(
                name='target', shape=[1], dtype='int64', lod_level=1)
            crf_cost = fluid.layers.linear_chain_crf(
                input=feature_out,
                label=target,
                param_attr=fluid.ParamAttr(
                    name='crfw', learning_rate=1e-1))
            avg_cost = fluid.layers.mean(crf_cost)

            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=0.01,
                    decay_steps=100000,
                    decay_rate=0.5,
                    staircase=True))
            sgd_optimizer.minimize(avg_cost)

            train_data = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.conll05.test(), buf_size=8192),
                batch_size=16)

            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup)

C
chengduoZH 已提交
743 744 745
            pe = fluid.ParallelExecutor(
                use_cuda=True,
                loss_name=avg_cost.name,
Y
yuyang18 已提交
746
                build_strategy=build_strategy)
Y
Yu Yang 已提交
747 748 749 750 751 752 753 754 755 756 757

            feeder = fluid.DataFeeder(
                feed_list=[
                    word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate,
                    mark, target
                ],
                place=fluid.CPUPlace())

            data = train_data()
            for i in xrange(10):
                cur_batch = next(data)
C
chengduoZH 已提交
758
                print map(np.array,
J
stash  
JiayiFeng 已提交
759
                          pe.run(feed=feeder.feed(cur_batch),
Y
Yu Yang 已提交
760
                                 fetch_list=[avg_cost.name]))[0]
C
chengduoZH 已提交
761

Y
yuyang18 已提交
762 763 764 765 766
    def test_update_sparse_parameter_all_reduce(self):
        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
        self.check_network_convergence(
            is_sparse=True, build_strategy=build_strategy)
C
chengduoZH 已提交
767

Y
yuyang18 已提交
768 769 770 771 772
    def test_update_dense_parameter_all_reduce(self):
        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
        self.check_network_convergence(
            is_sparse=False, build_strategy=build_strategy)
C
chengduoZH 已提交
773

Y
yuyang18 已提交
774 775 776
    def test_update_sparse_parameter_reduce(self):
        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduoZH 已提交
777
        self.check_network_convergence(
778
            is_sparse=True, build_strategy=build_strategy)
C
chengduoZH 已提交
779

Y
yuyang18 已提交
780 781 782
    def test_update_dense_parameter_reduce(self):
        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduoZH 已提交
783
        self.check_network_convergence(
Y
yuyang18 已提交
784
            is_sparse=False, build_strategy=build_strategy)
C
chengduoZH 已提交
785

C
chengduoZH 已提交
786

C
chengduoZH 已提交
787
# test fetch all the variables of global_block
C
chengduoZH 已提交
788 789

import paddle.dataset.flowers as flowers
C
chengduoZH 已提交
790
import math
C
chengduoZH 已提交
791 792


C
chengduoZH 已提交
793
def Lenet(data, class_dim):
C
chengduoZH 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    conv1 = fluid.layers.conv2d(data, 32, 5, 1, act=None)
    bn1 = fluid.layers.batch_norm(conv1, act='relu')
    pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
    conv2 = fluid.layers.conv2d(pool1, 50, 5, 1, act=None)
    bn2 = fluid.layers.batch_norm(conv2, act='relu')
    pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)

    fc1 = fluid.layers.fc(pool2, size=500, act='relu')
    fc2 = fluid.layers.fc(fc1, size=class_dim, act='softmax')

    return fc2


class TestFetchOp(unittest.TestCase):
    def parallel_exe(self, train_inputs, seed):
        main = fluid.Program()
        startup = fluid.Program()
        startup.random_seed = seed
        with fluid.program_guard(main, startup):
            data = fluid.layers.data(
                name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
816
            out = Lenet(data, class_dim=102)
C
chengduoZH 已提交
817 818 819 820 821 822 823 824 825 826 827
            loss = fluid.layers.cross_entropy(input=out, label=label)
            loss = fluid.layers.mean(loss)

            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))

            opt.minimize(loss)

            # TODO(zcd): I found that onece the memory optimizer is open,
C
chengduoZH 已提交
828 829
            # parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD,
            # conv2d_1.b_0@GRAD. Those variables should not be pruned.
C
chengduoZH 已提交
830 831 832 833 834 835 836 837 838 839 840
            # fluid.memory_optimize(main)

            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup)

            feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
            pe = fluid.ParallelExecutor(
                use_cuda=True, loss_name=loss.name, main_program=main)

            fetch_list = []
C
chengduoZH 已提交
841 842
            all_vars = main.global_block().vars
            for k, v in all_vars.iteritems():
C
chengduoZH 已提交
843
                if 'tmp' not in k and k[0] is not '_' or v.persistable:
C
chengduoZH 已提交
844
                    fetch_list.append(k)
C
chengduoZH 已提交
845

C
chengduoZH 已提交
846
            for data in train_inputs:
C
chengduoZH 已提交
847 848
                ret = pe.run(fetch_list, feed=feeder.feed(data))
                for i in range(len(fetch_list)):
C
chengduoZH 已提交
849 850
                    assert not math.isnan(np.sum(ret[i])) and \
                           not math.isinf(np.sum(ret[i]))
C
chengduoZH 已提交
851

C
chengduoZH 已提交
852
    def test_fetch_op(self):
C
chengduoZH 已提交
853 854 855
        tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
        tst_reader_iter = tst_reader()

C
chengduoZH 已提交
856
        iters = 3
C
chengduoZH 已提交
857 858 859 860
        train_inputs = []
        for i in range(iters):
            train_inputs.append(tst_reader_iter.next())

C
chengduoZH 已提交
861
        self.parallel_exe(train_inputs, seed=1)
C
chengduoZH 已提交
862 863


Y
yuyang18 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
class TestFeedParallel(unittest.TestCase):
    def test_main(self):
        main = fluid.Program()
        startup = fluid.Program()
        startup.random_seed = 1
        with fluid.scope_guard(fluid.core.Scope()):
            with fluid.program_guard(main, startup):
                data = fluid.layers.data(
                    name='image', shape=[3, 224, 224], dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')
                out = Lenet(data, class_dim=102)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                loss = fluid.layers.mean(loss)
                opt = fluid.optimizer.Momentum(
                    learning_rate=0.1,
                    momentum=0.9,
                    regularization=fluid.regularizer.L2Decay(1e-4))

                opt.minimize(loss)
        place = fluid.CUDAPlace(0)
        feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
        reader = feeder.decorate_reader(
            paddle.batch(
                flowers.train(), batch_size=16), multi_devices=True)
        exe = fluid.Executor(place)
        exe.run(startup)
        pe = fluid.ParallelExecutor(
            use_cuda=True, loss_name=loss.name, main_program=main)

        for batch_id, data in enumerate(reader()):
            loss_np = np.array(pe.run(feed=data, fetch_list=[loss.name])[0])
            print batch_id, loss_np
            if batch_id == 2:
                break


C
chengduoZH 已提交
901 902
if __name__ == '__main__':
    unittest.main()