test_parallel_executor.py 16.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import numpy
Y
Yu Yang 已提交
16
import unittest
Y
Yu Yang 已提交
17

Y
Yu Yang 已提交
18
import paddle.fluid as fluid
19 20 21
import paddle
import paddle.dataset.mnist as mnist
import paddle.dataset.wmt16 as wmt16
Y
Yu Yang 已提交
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def simple_fc_net():
    reader = fluid.layers.open_recordio_file(
        filename='./mnist.recordio',
        shapes=[[-1, 784], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])
    img, label = fluid.layers.read_file(reader)
    hidden = img
    for _ in xrange(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def fc_with_batchnorm():
    reader = fluid.layers.open_recordio_file(
        filename='./mnist.recordio',
        shapes=[[-1, 784], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])
    img, label = fluid.layers.read_file(reader)
    hidden = img
Y
Yu Yang 已提交
53
    for _ in xrange(1):
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))

        hidden = fluid.layers.batch_norm(input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def squeeze_excitation(input, num_channels, reduction_ratio):
    # pool = fluid.layers.pool2d(
    #    input=input, pool_size=0, pool_type='avg', global_pooling=True)
    conv = input
    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)

    squeeze = fluid.layers.fc(input=pool,
                              size=num_channels / reduction_ratio,
                              act='relu')
    excitation = fluid.layers.fc(input=squeeze,
                                 size=num_channels,
                                 act='sigmoid')
    scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
    return scale


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) / 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1)


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1]
    if ch_in != ch_out:
        if stride == 1:
            filter_size = 1
        else:
            filter_size = 3
        return conv_bn_layer(input, ch_out, filter_size, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
    # The number of first 1x1 convolutional channels for each bottleneck build block
    # was halved to reduce the compution cost.
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters * 2,
        filter_size=3,
        stride=stride,
        groups=cardinality,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
    scale = squeeze_excitation(
        input=conv2,
        num_channels=num_filters * 2,
        reduction_ratio=reduction_ratio)

    short = shortcut(input, num_filters * 2, stride)

    return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


Y
Yu Yang 已提交
138 139 140 141 142
def SE_ResNeXt152(batch_size=4):
    img = fluid.layers.fill_constant(
        shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0)
    label = fluid.layers.fill_constant(
        shape=[batch_size, 1], dtype='int64', value=0.0)
Y
Yu Yang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    conv = conv_bn_layer(
        input=img, num_filters=64, filter_size=3, stride=2, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=128, filter_size=3, stride=1, act='relu')
    conv = fluid.layers.pool2d(
        input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

    cardinality = 64
    reduction_ratio = 16
    depth = [3, 8, 36, 3]
    num_filters = [128, 256, 512, 1024]

    for block in range(len(depth)):
        for i in range(depth[block]):
            conv = bottleneck_block(
                input=conv,
                num_filters=num_filters[block],
                stride=2 if i == 0 and block != 0 else 1,
                cardinality=cardinality,
                reduction_ratio=reduction_ratio)

    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)
    dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2)
    # Classifier layer:
    prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
179 180 181
import time


Y
Yu Yang 已提交
182
class TestParallelExecutorBase(unittest.TestCase):
Y
Yu Yang 已提交
183 184 185 186
    def check_network_convergence(self,
                                  method,
                                  memory_opt=True,
                                  iter=10,
X
Xin Pan 已提交
187 188
                                  batch_size=None,
                                  allow_op_delay=False):
Y
Yu Yang 已提交
189 190 191 192 193 194 195 196 197
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = method()
            adam = fluid.optimizer.Adam()
            adam.minimize(loss)
            if memory_opt:
                fluid.memory_optimize(main)

X
Xin Pan 已提交
198 199 200 201
            exe = fluid.ParallelExecutor(
                loss_name=loss.name,
                use_cuda=True,
                allow_op_delay=allow_op_delay)
Y
Yu Yang 已提交
202 203 204
            if batch_size is not None:
                batch_size *= fluid.core.get_cuda_device_count()
            begin = time.time()
Y
Yu Yang 已提交
205 206 207 208 209 210 211
            first_loss, = exe.run([loss.name])
            first_loss = numpy.array(first_loss)

            for i in xrange(iter):
                exe.run([])

            last_loss, = exe.run([loss.name])
Y
Yu Yang 已提交
212 213 214 215 216 217
            end = time.time()

            if batch_size is not None:
                print "%.4f Instance per second" % (
                    (batch_size * iter + 2) / (end - begin))

Y
Yu Yang 已提交
218 219 220
            last_loss = numpy.array(last_loss)

            print first_loss, last_loss
Y
Yu Yang 已提交
221
            # self.assertGreater(first_loss[0], last_loss[0])
Y
Yu Yang 已提交
222 223 224


class TestMNIST(TestParallelExecutorBase):
225 226
    @classmethod
    def setUpClass(cls):
Y
Stash  
Yu Yang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240
        # Convert mnist to recordio file
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(mnist.train(), batch_size=32)
            feeder = fluid.DataFeeder(
                feed_list=[  # order is image and label
                    fluid.layers.data(
                        name='image', shape=[784]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            fluid.recordio_writer.convert_reader_to_recordio_file(
                './mnist.recordio', reader, feeder)

Y
Yu Yang 已提交
241 242
    def test_simple_fc(self):
        self.check_network_convergence(simple_fc_net)
X
Xin Pan 已提交
243
        self.check_network_convergence(simple_fc_net, allow_op_delay=True)
Y
Yu Yang 已提交
244 245 246

    def test_batchnorm_fc(self):
        self.check_network_convergence(fc_with_batchnorm)
X
Xin Pan 已提交
247
        self.check_network_convergence(fc_with_batchnorm, allow_op_delay=True)
Y
Yu Yang 已提交
248 249 250


class TestResnet(TestParallelExecutorBase):
Y
Yu Yang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    # @classmethod
    # def setUpClass(cls):
    #     # import os
    #     # if os.path.exists('./flowers.recordio'):
    #     #     return
    #     with fluid.program_guard(fluid.Program(), fluid.Program()):
    #         reader = paddle.batch(flowers.train(), batch_size=4)
    #         feeder = fluid.DataFeeder(
    #             feed_list=[
    #                 fluid.layers.data(
    #                     name='image', shape=[3, 224, 224]),
    #                 fluid.layers.data(
    #                     name='label', shape=[1], dtype='int64'),
    #             ],
    #             place=fluid.CPUPlace())
    #         fluid.recordio_writer.convert_reader_to_recordio_file(
    #             "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress)
Y
Yu Yang 已提交
268 269

    def test_resnet(self):
Y
Yu Yang 已提交
270 271 272 273 274 275 276
        import functools
        batch_size = 4
        self.check_network_convergence(
            functools.partial(
                SE_ResNeXt152, batch_size=batch_size),
            iter=20,
            batch_size=batch_size)
X
Xin Pan 已提交
277 278 279 280 281 282
        self.check_network_convergence(
            functools.partial(
                SE_ResNeXt152, batch_size=batch_size),
            iter=20,
            batch_size=batch_size,
            allow_op_delay=True)
Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438


class ModelHyperParams(object):
    # Dictionary size for source and target language. This model directly uses
    # paddle.dataset.wmt16 in which <bos>, <eos> and <unk> token has
    # alreay been added, but the <pad> token is not added. Transformer requires
    # sequences in a mini-batch are padded to have the same length. A <pad> token is
    # added into the original dictionary in paddle.dateset.wmt16.

    # size of source word dictionary.
    src_vocab_size = 10000
    # index for <pad> token in source language.
    src_pad_idx = src_vocab_size

    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <pad> token in target language.
    trg_pad_idx = trg_vocab_size

    # position value corresponding to the <pad> token.
    pos_pad_idx = 0

    # max length of sequences. It should plus 1 to include position
    # padding token for position encoding.
    max_length = 50

    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.

    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
    d_inner_hid = 1024
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
    dropout = 0.1


import numpy as np


def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias. Then, convert the numpy
    data to tensors and return a dict mapping names to tensors.
    """

    def __pad_batch_data(insts,
                         pad_idx,
                         is_target=False,
                         return_pos=True,
                         return_attn_bias=True,
                         return_max_len=True):
        """
        Pad the instances to the max sequence length in batch, and generate the
        corresponding position data and attention bias.
        """
        return_list = []
        max_len = max(len(inst) for inst in insts)
        inst_data = np.array(
            [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_data.astype("int64").reshape([-1, 1])]
        if return_pos:
            inst_pos = np.array([[
                pos_i + 1 if w_i != pad_idx else 0
                for pos_i, w_i in enumerate(inst)
            ] for inst in inst_data])

            return_list += [inst_pos.astype("int64").reshape([-1, 1])]
        if return_attn_bias:
            if is_target:
                # This is used to avoid attention on paddings and subsequent
                # words.
                slf_attn_bias_data = np.ones((inst_data.shape[0], max_len,
                                              max_len))
                slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                    [-1, 1, max_len, max_len])
                slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                             [1, n_head, 1, 1]) * [-1e9]
            else:
                # This is used to avoid attention on paddings.
                slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                               (max_len - len(inst))
                                               for inst in insts])
                slf_attn_bias_data = np.tile(
                    slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                    [1, n_head, max_len, 1])
            return_list += [slf_attn_bias_data.astype("float32")]
        if return_max_len:
            return_list += [max_len]
        return return_list if len(return_list) > 1 else return_list[0]

    def data_to_tensor(data_list, name_list, input_dict, place):
        assert len(data_list) == len(name_list)
        for i in range(len(name_list)):
            tensor = fluid.LoDTensor()
            tensor.set(data_list[i], place)
            input_dict[name_list[i]] = tensor

    src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, is_target=False)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, is_target=True)
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
    lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False,
                                False, False, False)
    lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])

    return [
        src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias,
        trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
    ]


import transformer_model


def transformer():
    return transformer_model.transformer(
        ModelHyperParams.src_vocab_size + 1,
        ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer, ModelHyperParams.n_head,
        ModelHyperParams.d_key, ModelHyperParams.d_value,
        ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
        ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)


class TestTransformer(TestParallelExecutorBase):
    @classmethod
    def setUpClass(cls):
        reader = paddle.batch(
            wmt16.train(ModelHyperParams.src_vocab_size,
                        ModelHyperParams.trg_vocab_size),
            batch_size=transformer_model.batch_size)

        with fluid.recordio_writer.create_recordio_writer(
                "./wmt16.recordio") as writer:
            for batch in reader():
                for tensor in prepare_batch_input(
                        batch, ModelHyperParams.src_pad_idx,
                        ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head):
                    t = fluid.LoDTensor()
                    t.set(tensor, fluid.CPUPlace())
                    writer.append_tensor(t)
                writer.complete_append_tensor()

Y
Yu Yang 已提交
439
    @unittest.skip("transformer is buggy in multi gpu")
Y
Yu Yang 已提交
440 441
    def test_main(self):
        self.check_network_convergence(transformer)