test_parallel_executor.py 8.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
Y
Stash  
Yu Yang 已提交
17 18
import paddle.v2 as paddle
import paddle.v2.dataset.mnist as mnist
Y
Yu Yang 已提交
19
import paddle.v2.dataset.flowers as flowers
Y
Yu Yang 已提交
20
import numpy
Y
Yu Yang 已提交
21 22


23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
def simple_fc_net():
    reader = fluid.layers.open_recordio_file(
        filename='./mnist.recordio',
        shapes=[[-1, 784], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])
    img, label = fluid.layers.read_file(reader)
    hidden = img
    for _ in xrange(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def fc_with_batchnorm():
    reader = fluid.layers.open_recordio_file(
        filename='./mnist.recordio',
        shapes=[[-1, 784], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])
    img, label = fluid.layers.read_file(reader)
    hidden = img
Y
Yu Yang 已提交
52
    for _ in xrange(1):
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))

        hidden = fluid.layers.batch_norm(input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def squeeze_excitation(input, num_channels, reduction_ratio):
    # pool = fluid.layers.pool2d(
    #    input=input, pool_size=0, pool_type='avg', global_pooling=True)
    conv = input
    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)

    squeeze = fluid.layers.fc(input=pool,
                              size=num_channels / reduction_ratio,
                              act='relu')
    excitation = fluid.layers.fc(input=squeeze,
                                 size=num_channels,
                                 act='sigmoid')
    scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
    return scale


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) / 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1)


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1]
    if ch_in != ch_out:
        if stride == 1:
            filter_size = 1
        else:
            filter_size = 3
        return conv_bn_layer(input, ch_out, filter_size, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
    # The number of first 1x1 convolutional channels for each bottleneck build block
    # was halved to reduce the compution cost.
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters * 2,
        filter_size=3,
        stride=stride,
        groups=cardinality,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
    scale = squeeze_excitation(
        input=conv2,
        num_channels=num_filters * 2,
        reduction_ratio=reduction_ratio)

    short = shortcut(input, num_filters * 2, stride)

    return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


def SE_ResNeXt152():
    reader = fluid.layers.open_recordio_file(
        filename='./flowers.recordio',
        shapes=[[-1, 3, 224, 224], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])

    img, label = fluid.layers.read_file(reader)

    conv = conv_bn_layer(
        input=img, num_filters=64, filter_size=3, stride=2, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=128, filter_size=3, stride=1, act='relu')
    conv = fluid.layers.pool2d(
        input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

    cardinality = 64
    reduction_ratio = 16
    depth = [3, 8, 36, 3]
    num_filters = [128, 256, 512, 1024]

    for block in range(len(depth)):
        for i in range(depth[block]):
            conv = bottleneck_block(
                input=conv,
                num_filters=num_filters[block],
                stride=2 if i == 0 and block != 0 else 1,
                cardinality=cardinality,
                reduction_ratio=reduction_ratio)

    shape = conv.shape
    reshape = fluid.layers.reshape(
        x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
    pool = fluid.layers.reduce_mean(input=reshape, dim=2)
    dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2)
    # Classifier layer:
    prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
class TestParallelExecutorBase(unittest.TestCase):
    def check_network_convergence(self, method, memory_opt=True, iter=10):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = method()
            adam = fluid.optimizer.Adam()
            adam.minimize(loss)
            if memory_opt:
                fluid.memory_optimize(main)

            exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True)
            first_loss, = exe.run([loss.name])
            first_loss = numpy.array(first_loss)

            for i in xrange(iter):
                exe.run([])

            last_loss, = exe.run([loss.name])
            last_loss = numpy.array(last_loss)

            print first_loss, last_loss
            self.assertGreater(first_loss[0], last_loss[0])


class TestMNIST(TestParallelExecutorBase):
207 208
    @classmethod
    def setUpClass(cls):
Y
Stash  
Yu Yang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222
        # Convert mnist to recordio file
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(mnist.train(), batch_size=32)
            feeder = fluid.DataFeeder(
                feed_list=[  # order is image and label
                    fluid.layers.data(
                        name='image', shape=[784]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            fluid.recordio_writer.convert_reader_to_recordio_file(
                './mnist.recordio', reader, feeder)

Y
Yu Yang 已提交
223 224 225 226 227 228 229 230 231 232
    def test_simple_fc(self):
        self.check_network_convergence(simple_fc_net)

    def test_batchnorm_fc(self):
        self.check_network_convergence(fc_with_batchnorm)


class TestResnet(TestParallelExecutorBase):
    @classmethod
    def setUpClass(cls):
Y
Yu Yang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(flowers.train(), batch_size=4)
            feeder = fluid.DataFeeder(
                feed_list=[
                    fluid.layers.data(
                        name='image', shape=[3, 224, 224]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            fluid.recordio_writer.convert_reader_to_recordio_file(
                "./flowers.recordio", reader, feeder)

    def test_resnet(self):
Y
Yu Yang 已提交
247
        self.check_network_convergence(SE_ResNeXt152, iter=200)