nn.py 141.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    'Conv2D',
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Dropout',
    'Embedding',
    'GRUUnit',
    'InstanceNorm',
    'LayerNorm',
    'NCE',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
71
]
M
minqiyang 已提交
72 73


X
Xin Pan 已提交
74
class Conv2D(layers.Layer):
75
    r"""
76 77
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
78 79 80
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
81 82 83
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
84
    and W is the width of the filter. If the groups is greater than 1,
85
    C will equal the number of input feature map divided by the groups.
86
    Please refer to UFLDL's `convolution
87
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
88
    for more details.
89 90 91 92 93 94 95 96
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

97
        Out = \\sigma (W \\ast X + b)
98 99 100

    Where:

101 102
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
103
    * :math:`\\ast`: Convolution operation.
104
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

127
    Parameters:
128
        num_channels(int): The number of channels in the input image.
129
        num_filters(int): The number of filter. It is as same as the output
130 131
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
132 133
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
134
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
135
            contain two integers, (stride_H, stride_W). Otherwise, the
136 137
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
138
            contain two integers, (padding_H, padding_W). Otherwise, the
139 140
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
141
            contain two integers, (dilation_H, dilation_W). Otherwise, the
142
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
143
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
144 145 146
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
147 148
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
149 150 151 152
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
153
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
154 155 156 157
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
158 159 160 161 162
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
163

164 165 166 167
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
168

169 170
    Returns:
        None
171

172
    Raises:
173
        ValueError: if ``use_cudnn`` is not a bool value.
174 175 176

    Examples:
        .. code-block:: python
L
lujun 已提交
177

178 179 180 181 182
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

183
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
184
          with fluid.dygraph.guard():
185
              conv2d = Conv2D(3, 2, 3)
186 187
              data = to_variable(data)
              conv = conv2d(data)
188 189 190

    """

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
M
minqiyang 已提交
206
        assert param_attr is not False, "param_attr should not be False here."
207
        super(Conv2D, self).__init__()
208

209 210 211 212 213 214
        if (
            core.is_compiled_with_cuda()
            and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
215 216
            use_cudnn = False

217
        self._num_channels = num_channels
M
minqiyang 已提交
218 219 220 221
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
222
        self._act = act
M
minqiyang 已提交
223 224 225
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
226
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
227 228 229 230 231
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
232

233 234 235 236 237 238
        if (
            self._num_channels == self._groups
            and num_filters % self._num_channels == 0
            and not self._use_cudnn
            and not self._use_mkldnn
        ):
239 240 241
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
242

243 244
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
245 246 247 248
            if (
                self._num_channels == self._groups
                and self._num_channels == self._num_filters
            ):
249
                self._l_type = 'depthwise_conv2d'
250
            else:
251
                self._l_type = 'conv2d'
252

253
        self._num_channels = num_channels
254 255
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
256
        else:
257
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
258
                raise ValueError("num_channels must be divisible by groups.")
259 260
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
261
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
262 263

        def _get_default_param_initializer():
264 265 266 267
            filter_elem_num = (
                filter_size[0] * filter_size[1] * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
M
minqiyang 已提交
268 269
            return Normal(0.0, std, 0)

270
        self.weight = self.create_parameter(
271
            attr=self._param_attr,
M
minqiyang 已提交
272 273
            shape=filter_shape,
            dtype=self._dtype,
274 275
            default_initializer=_get_default_param_initializer(),
        )
M
minqiyang 已提交
276

277 278 279 280 281 282
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
M
minqiyang 已提交
283 284

    def forward(self, input):
H
hong 已提交
285
        if in_dygraph_mode() and self._l_type == "conv2d":
286 287 288 289 290 291 292
            pre_bias = _C_ops.conv2d(
                input,
                self.weight,
                self._stride,
                self._padding,
                "EXPLICIT",
                self._dilation,
293
                self._groups if self._groups else 1,
294 295
                "NCHW",
            )
H
hong 已提交
296 297 298 299 300
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )

        if _non_static_mode() and (
            self._l_type == 'conv2d' or self._l_type == 'depthwise_conv2d'
        ):
            attrs = (
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups if self._groups else 1,
                'use_cudnn',
                self._use_cudnn,
                'use_mkldnn',
                self._use_mkldnn,
            )
321
            out = _legacy_C_ops.conv2d(input, self.weight, *attrs)
322 323
            pre_bias = out

324
            pre_act = dygraph_utils._append_bias_in_dygraph(
325 326
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn
            )
327
            return dygraph_utils._append_activation_in_dygraph(
328 329
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
330 331
        inputs = {
            'Input': [input],
332
            'Filter': [self.weight],
333 334 335 336 337 338 339
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
340
            'use_mkldnn': self._use_mkldnn,
341
        }
342

343 344 345
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'Conv2D'
        )
M
minqiyang 已提交
346
        pre_bias = self._helper.create_variable_for_type_inference(
347 348
            dtype=self._dtype
        )
M
minqiyang 已提交
349

350 351 352 353 354 355 356 357 358
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs=attrs,
        )
M
minqiyang 已提交
359

360
        if self.bias is not None:
361
            pre_act = self._helper.create_variable_for_type_inference(
362 363 364 365 366 367 368 369
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1, 'use_mkldnn': self._use_mkldnn},
            )
370 371
        else:
            pre_act = pre_bias
M
minqiyang 已提交
372

L
lujun 已提交
373
        # Currently, we don't support inplace in dygraph mode
374
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
375 376


L
lujun 已提交
377
class Conv3D(layers.Layer):
378
    r"""
379 380 381 382
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
383
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
384
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
385 386 387 388 389 390 391 392 393 394 395 396 397 398
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
399
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

425
    Parameters:
426
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
427
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
428
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
429
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
430 431 432
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
433
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
434 435
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
436
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
437 438
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
439
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
440
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
441
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
442 443 444
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
445 446
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
447 448 449
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
450 451
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
452 453 454
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
455 456 457 458 459
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
460
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
461

D
DuYao 已提交
462 463 464 465
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
466

467
    Returns:
D
DuYao 已提交
468
        None.
469 470 471 472 473 474 475 476

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

477 478 479 480 481 482
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
483
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
484 485
              ret = conv3d(fluid.dygraph.base.to_variable(data))

486 487
    """

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
503
        assert param_attr is not False, "param_attr should not be False here."
504 505
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
506 507 508
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
509
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
510 511
        self._act = act
        self._use_cudnn = use_cudnn
512 513 514 515
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
516
        self._dtype = dtype
517 518

        if self._groups is None:
519
            num_filter_channels = self._num_channels
L
lujun 已提交
520
        else:
521
            if self._num_channels % self._groups != 0:
L
lujun 已提交
522
                raise ValueError("num_channels must be divisible by groups.")
523
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
524

525 526
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
527 528

        def _get_default_param_initializer():
529 530 531 532 533 534 535
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
536 537
            return Normal(0.0, std, 0)

538
        self.weight = self.create_parameter(
539
            attr=self._param_attr,
L
lujun 已提交
540 541
            shape=filter_shape,
            dtype=self._dtype,
542 543
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
544

545 546 547 548 549 550
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
551 552 553

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
573

574
        if self.bias is not None:
575
            pre_act = self._helper.create_variable_for_type_inference(
576 577 578 579 580 581 582 583
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
584 585
        else:
            pre_act = pre_bias
L
lujun 已提交
586 587 588 589 590

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
591
    r"""
L
lujun 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
637 638 639 640 641 642 643 644
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

645 646
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
647 648
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
649 650 651 652 653
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
654 655
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
656

657
    Parameters:
658
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
659 660
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
661
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
662
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
663
            Otherwise, the filter will be a square.
D
DuYao 已提交
664 665 666 667 668 669 670 671 672 673
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
674 675 676
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
677 678
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
679
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
680
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
681
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
682 683 684 685
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
686 687
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
688 689
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
690 691
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
692 693 694
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
695 696 697 698 699
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
700
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
701
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
702

D
DuYao 已提交
703 704 705 706
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
707

L
lujun 已提交
708
    Returns:
D
DuYao 已提交
709
        None.
L
lujun 已提交
710 711 712 713 714 715 716 717

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

718 719 720 721 722 723
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
724
                    num_channels=3,
725 726 727 728 729
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
730 731
    """

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
747
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
748 749
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
750 751 752
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
753 754 755 756
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
757
        self._num_channels = num_channels
L
lujun 已提交
758 759 760 761 762 763
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
764
        self._dtype = dtype
L
lujun 已提交
765

766
        self._filter_size = utils.convert_to_list(
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
783 784 785

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
786 787 788 789 790 791 792 793 794 795 796 797 798 799
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
800 801 802

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
803 804 805 806 807 808 809 810
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
811 812 813 814 815 816 817
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
818
class Pool2D(layers.Layer):
819
    r"""
820

821 822 823 824 825
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
826 827
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

873
    Parameters:
874
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
875
            it must contain two integers, (pool_size_Height, pool_size_Width).
876
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
877
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
878 879
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
880
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
881
            the pool stride size will be a square of an int. Default: 1.
882
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
883
            If ``pool_padding`` is a tuple,
884
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
885 886 887 888 889 890 891
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
892 893
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
894
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
895
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
896 897

    Returns:
898
        None
899 900

    Raises:
901 902 903 904
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
905 906 907 908 909

    Examples:

        .. code-block:: python

L
lujun 已提交
910
          import paddle.fluid as fluid
911 912
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
913 914

          with fluid.dygraph.guard():
915
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
916
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
917 918 919
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
920
             pool2d_res = pool2d(to_variable(data))
921 922 923

    """

924 925 926 927 928 929 930 931 932 933 934 935
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
936 937
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
938 939 940
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
941 942
                str(pool_type),
            )
M
minqiyang 已提交
943 944 945 946

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
947 948
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
949 950 951 952

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

953
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
954

955 956 957
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
958 959
                "Attr(data_format): %s." % str(data_format)
            )
960

961
        super(Pool2D, self).__init__()
M
minqiyang 已提交
962 963 964

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
965 966 967
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
968 969 970 971 972
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
973
        self._data_format = data_format
M
minqiyang 已提交
974 975 976
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
977
        if _non_static_mode():
978
            if not self._use_mkldnn and in_dygraph_mode():
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                    self._use_cudnn,
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
1016
            return _legacy_C_ops.pool2d(input, *attrs)
1017

1018
        check_variable_and_dtype(
1019 1020 1021 1022 1023
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
1024

1025 1026 1027 1028 1029 1030 1031 1032
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
1033
            "use_mkldnn": self._use_mkldnn,
1034
            "exclusive": self._exclusive,
1035
            "data_format": self._data_format,
1036 1037 1038
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
1039 1040
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

1041 1042 1043 1044 1045 1046
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
1047
        return pool_out
M
minqiyang 已提交
1048 1049


S
songyouwei 已提交
1050 1051
class Linear(layers.Layer):
    """
1052

S
songyouwei 已提交
1053 1054 1055 1056 1057 1058 1059 1060
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

1061
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

1102 1103 1104 1105 1106 1107 1108 1109 1110
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
S
songyouwei 已提交
1111 1112 1113
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
1114 1115 1116 1117 1118 1119 1120 1121 1122
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
1123

1124
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
1125

S
songyouwei 已提交
1126
    def forward(self, input):
J
Jiabin Yang 已提交
1127
        if _non_static_mode():
1128
            pre_bias = _varbase_creator(dtype=input.dtype)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
1142
            pre_act = dygraph_utils._append_bias_in_dygraph(
1143 1144 1145
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
1146 1147
                use_mkldnn=self._use_mkldnn,
            )
1148

1149
            return dygraph_utils._append_activation_in_dygraph(
1150 1151
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
1152

1153 1154 1155
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
1156

1157
        attrs = {
S
songyouwei 已提交
1158 1159 1160
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1161
            "use_mkldnn": self._use_mkldnn,
1162 1163
        }
        inputs = {"X": [input], "Y": [self.weight]}
1164

S
songyouwei 已提交
1165
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1166 1167 1168
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
1169
        if self.bias is not None:
S
songyouwei 已提交
1170
            pre_activation = self._helper.create_variable_for_type_inference(
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
1182 1183 1184 1185 1186
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1187
class InstanceNorm(layers.Layer):
1188
    r"""
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1219
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1220 1221
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1222
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
1223 1224
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1225
             If it is set to None or one attribute of ParamAttr, instance_norm
1226 1227
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
1228
             If it is set to False, will not create bias_attr. Default: None.
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

1244
          # x's shape is [1, 3, 1, 2]
1245 1246 1247 1248 1249
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
1250
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995]
1251 1252 1253 1254
              print(ret)

    """

1255 1256 1257 1258 1259 1260 1261 1262
    def __init__(
        self,
        num_channels,
        epsilon=1e-5,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
1263 1264
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1265
        if param_attr == False or bias_attr == False:
1266 1267
            assert (
                bias_attr == param_attr
1268
            ), "param_attr and bias_attr must be set to False at the same time in InstanceNorm"
1269 1270 1271 1272 1273
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1274 1275 1276 1277 1278 1279
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
1280 1281 1282 1283 1284 1285 1286 1287 1288
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
C
ceci3 已提交
1289 1290 1291
        else:
            self.scale = None
            self.bias = None
1292 1293

    def forward(self, input):
1294
        if in_dygraph_mode():
1295 1296 1297
            out = _C_ops.instance_norm(
                input, self.scale, self.bias, self._epsilon
            )
1298 1299
            return out
        if _in_legacy_dygraph():
1300 1301 1302
            out, _, _ = _legacy_C_ops.instance_norm(
                input, self.scale, self.bias, 'epsilon', self._epsilon
            )
1303 1304
            return out

1305 1306 1307
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "InstanceNorm"
        )
1308 1309 1310

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1311 1312 1313 1314
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1315 1316

        saved_mean = self._helper.create_variable_for_type_inference(
1317 1318
            dtype=self._dtype, stop_gradient=True
        )
1319
        saved_variance = self._helper.create_variable_for_type_inference(
1320 1321
            dtype=self._dtype, stop_gradient=True
        )
1322
        instance_norm_out = self._helper.create_variable_for_type_inference(
1323 1324
            self._dtype
        )
1325 1326 1327 1328

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
1329
            "SavedVariance": [saved_variance],
1330 1331
        }

1332 1333 1334
        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
1335 1336 1337
        return instance_norm_out


M
minqiyang 已提交
1338
class BatchNorm(layers.Layer):
1339
    r"""
1340

1341 1342
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
1343
    It implements the function of the Batch Normalization Layer and can be used
1344 1345
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1346 1347 1348 1349
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1350
    When use_global_stats = False, the :math:`\mu_{\beta}`
1351
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1352
    Calculated as follows:
1353 1354 1355

    ..  math::

1356 1357 1358 1359
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1360

1361 1362
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1363 1364 1365

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1366 1367 1368 1369 1370 1371
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1372

1373
    The normalization function formula is as follows:
1374

1375 1376
    ..  math::

1377 1378 1379 1380
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1381

1382 1383 1384
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1385

1386
    Parameters:
1387
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1388
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1389 1390 1391
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1392 1393 1394
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1395 1396 1397
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1398
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1399 1400 1401
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1402 1403 1404 1405 1406 1407
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1408 1409
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1410
        use_global_stats(bool, optional): Whether to use global mean and
1411 1412 1413
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1414 1415 1416 1417
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1418 1419

    Returns:
1420
        None
1421 1422 1423

    Examples:
        .. code-block:: python
L
lujun 已提交
1424 1425

          import paddle.fluid as fluid
1426 1427
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1428

1429
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1430
          with fluid.dygraph.guard():
1431
              x = to_variable(x)
1432
              batch_norm = fluid.BatchNorm(10)
1433
              hidden1 = batch_norm(x)
1434 1435
    """

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
1454
        super(BatchNorm, self).__init__()
1455
        self._param_attr = param_attr
1456
        self._bias_attr = bias_attr
1457
        self._act = act
1458
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1459

1460 1461 1462
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1463

1464 1465
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1466 1467 1468 1469 1470 1471
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1502
        self._mean.stop_gradient = True
M
minqiyang 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1514
        self._variance.stop_gradient = True
M
minqiyang 已提交
1515 1516

        self._in_place = in_place
1517
        self._data_layout = data_layout
M
minqiyang 已提交
1518 1519 1520
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1521
        self._fuse_with_relu = False
M
minqiyang 已提交
1522
        self._use_global_stats = use_global_stats
1523
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1524 1525 1526 1527 1528 1529 1530

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1531

J
Jiabin Yang 已提交
1532
        if _non_static_mode():
H
hong 已提交
1533
            if in_dygraph_mode():
1534
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    not self.training,
                    self._use_global_stats,
                    self._trainable_statistics,
                    False,
                )
1548
                return dygraph_utils._append_activation_in_dygraph(
1549 1550
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1551 1552

            elif _in_legacy_dygraph():
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1571
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1582

1583
            return dygraph_utils._append_activation_in_dygraph(
1584 1585
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1586

1587 1588 1589
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1590

1591 1592 1593 1594 1595 1596 1597
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1598 1599
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1600
        }
M
minqiyang 已提交
1601

1602 1603 1604 1605 1606
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1607
            "Variance": [self._variance],
1608 1609
        }

1610
        saved_mean = self._helper.create_variable_for_type_inference(
1611 1612
            dtype=self._dtype, stop_gradient=True
        )
1613
        saved_variance = self._helper.create_variable_for_type_inference(
1614 1615
            dtype=self._dtype, stop_gradient=True
        )
1616
        reserve_space = self._helper.create_variable_for_type_inference(
1617 1618
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1619

1620 1621 1622 1623 1624
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1625 1626 1627 1628 1629 1630

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1631
            "SavedVariance": [saved_variance],
1632
        }
1633
        if reserve_space is not None:
1634
            outputs["ReserveSpace"] = [reserve_space]
1635

1636 1637 1638
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1639

L
lujun 已提交
1640
        # Currently, we don't support inplace in dygraph mode
1641
        return self._helper.append_activation(batch_norm_out, self._act)
1642 1643


1644 1645
class Dropout(layers.Layer):
    """
1646 1647
    This interface is used to construct a callable object of the ``Dropout`` class.
    For more details, refer to code examples.
1648

1649 1650 1651 1652 1653
    Drop or keep each element of input independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly sets (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.
1654

1655
    Dropout layer can be removed for efficiency concern.
1656

1657 1658 1659 1660 1661 1662 1663
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        seed (int, optional): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training. Default: None.
        dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']
1664

1665
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
1666

1667 1668
                                           - train: out = input * mask
                                           - inference: out = input * (1.0 - p)
1669

1670 1671 1672
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
1673

1674 1675
                                           - train: out = input * mask / ( 1.0 - p )
                                           - inference: out = input
1676

1677 1678 1679 1680 1681
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is p)
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                    This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                    Default: False.
1682

1683 1684
    Returns:
        None
1685

1686
    Examples:
1687

1688
        .. code-block:: python
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            import paddle.fluid as fluid
            from paddle.fluid.dygraph.base import to_variable
            import numpy as np

            x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
            with fluid.dygraph.guard():
                x = to_variable(x)
                m = fluid.dygraph.Dropout(p=0.5)
                droped_train = m(x)
                # switch to eval mode
                m.eval()
                droped_eval = m(x)
    """

    def __init__(
        self,
        p=0.5,
        seed=None,
        dropout_implementation="downgrade_in_infer",
        is_test=False,
    ):
1711 1712 1713 1714 1715
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
1716 1717
            seed, int
        ), "seed argument should be None or a integer"
1718 1719
        self._seed = seed
        assert dropout_implementation in (
1720 1721
            'downgrade_in_infer',
            'upscale_in_train',
1722 1723 1724 1725 1726
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1727 1728 1729
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1730 1731 1732 1733 1734
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1735 1736 1737
            'is_test': not self.training
            if _non_static_mode()
            else self._is_test,
1738 1739 1740 1741 1742
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1743
        if _non_static_mode():
1744
            attrs = sum(attrs.items(), ())
1745
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1746 1747 1748 1749
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
1750 1751 1752 1753 1754 1755 1756 1757 1758
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1759 1760 1761
        return out


1762
class Embedding(layers.Layer):
1763
    r"""
1764
    :alias_main: paddle.nn.Embedding
1765 1766
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1767

1768 1769
    **Embedding Layer**

Z
zhongpu 已提交
1770 1771 1772 1773 1774 1775
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1776 1777
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1778

1779
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1780 1781 1782 1783 1784 1785 1786
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1787 1788
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1789 1790 1791 1792 1793 1794 1795 1796
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1797

Z
zhongpu 已提交
1798 1799 1800 1801
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1802

1803
    Parameters:
L
lujun 已提交
1804 1805
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1806
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1807
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1808
            True because sparse update is faster. But some optimizer does not support sparse update,
1809
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1810 1811 1812 1813 1814
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1815
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1816 1817 1818 1819 1820 1821
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1822
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1823
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1824
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1825 1826 1827
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1828

Z
zhongpu 已提交
1829 1830
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1831

1832
    Returns:
Z
zhongpu 已提交
1833
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1834 1835

    Examples:
1836

1837 1838
        .. code-block:: python

L
lujun 已提交
1839 1840 1841 1842
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1843
          # example 1
1844 1845
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1846 1847
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1848
              emb = fluid.dygraph.Embedding(
1849 1850 1851
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1852
              static_rlt3 = emb(base.to_variable(inp_word))
1853
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1867
              static_rlt3 = emb(base.to_variable(inp_word))
1868 1869
    """

1870 1871 1872 1873 1874 1875 1876 1877 1878
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1879
        super(Embedding, self).__init__()
1880 1881 1882
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1883 1884 1885 1886 1887 1888 1889
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1890 1891 1892

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1893
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1894 1895 1896
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1897 1898 1899 1900 1901 1902
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1903 1904

    def forward(self, input):
J
Jiabin Yang 已提交
1905
        if _non_static_mode():
1906
            return _legacy_C_ops.lookup_table_v2(
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1918

1919 1920 1921 1922 1923 1924
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1925 1926 1927 1928
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1929
            'padding_idx': self._padding_idx,
1930
        }
1931

1932
        out = self._helper.create_variable_for_type_inference(self._dtype)
1933 1934 1935 1936 1937 1938
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1939 1940

        return out
M
minqiyang 已提交
1941 1942


1943
class LayerNorm(layers.Layer):
1944
    r"""
1945
    :alias_main: paddle.nn.LayerNorm
1946 1947
        :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
        :old_api: paddle.fluid.dygraph.LayerNorm
1948

1949 1950 1951
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1952
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1953

1954
    The formula is as follows:
1955

1956
    ..  math::
1957

1958
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1959

1960
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1961

1962
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1963

1964 1965 1966 1967 1968
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1969

1970
    Parameters:
1971 1972 1973 1974
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1975
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1976
            normalization. Default: True.
1977
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1978
            normalization. Default: True.
1979
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1980
            division by zero. Default: 1e-05.
1981
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1982 1983 1984
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1985
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1986
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1987 1988 1989
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1990
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1991
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1992
                  Default: None.
1993 1994
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1995
    Returns:
1996
        None
1997

1998
    Examples:
1999

2000 2001 2002
        .. code-block:: python

          import paddle.fluid as fluid
2003
          from paddle.fluid.dygraph.base import to_variable
2004 2005
          import numpy

2006
          x = numpy.random.random((3, 32, 32)).astype('float32')
2007
          with fluid.dygraph.guard():
2008
              x = to_variable(x)
2009
              layerNorm = fluid.LayerNorm([32, 32])
2010
              ret = layerNorm(x)
2011

2012
    """
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    def __init__(
        self,
        normalized_shape,
        scale=True,
        shift=True,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype='float32',
    ):
2025 2026 2027
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
2028

2029
        self._normalized_shape = list(normalized_shape)
2030 2031 2032 2033 2034 2035
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
2036 2037
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
2038
        if self._scale:
2039
            self.weight = self.create_parameter(
2040 2041 2042
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
2043 2044
                default_initializer=Constant(1.0),
            )
2045 2046
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
2047
                logging.warn("param_attr are only available with scale is True")
2048
            self.weight = None
2049

2050 2051
        if self._shift:
            assert self._bias_attr is not False
2052 2053 2054 2055 2056 2057
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
2058 2059
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
2060
                logging.warn("bias_attr are only available with shift is True")
2061
            self.bias = None
2062 2063

    def forward(self, input):
2064 2065 2066 2067
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
2068 2069 2070 2071
        if (
            input_ndim < normalized_ndim
            or input_shape[self._begin_norm_axis :] != self._normalized_shape
        ):
2072
            str_normalized_shape = str(self._normalized_shape)
2073 2074 2075 2076 2077 2078 2079 2080
            raise ValueError(
                'Given normalized_shape is '
                + str_normalized_shape
                + ', expected input with shape [*, '
                + str_normalized_shape[1:]
                + ', but got input shape '
                + str(input_shape)
            )
2081

J
Jiabin Yang 已提交
2082
        if _non_static_mode():
H
hong 已提交
2083
            if in_dygraph_mode():
2084 2085 2086 2087 2088 2089 2090 2091
                pre_act, _, _, = _C_ops.layer_norm(
                    input,
                    self.weight,
                    self.bias,
                    self._epsilon,
                    self._begin_norm_axis,
                    False,
                )
H
hong 已提交
2092
                return dygraph_utils._append_activation_in_dygraph(
2093 2094
                    pre_act, act=self._act
                )
H
hong 已提交
2095
            else:
2096
                pre_act, _, _ = _legacy_C_ops.layer_norm(
2097 2098 2099 2100 2101 2102 2103 2104
                    input,
                    self.weight,
                    self.bias,
                    'epsilon',
                    self._epsilon,
                    'begin_norm_axis',
                    self._begin_norm_axis,
                )
H
hong 已提交
2105
                return dygraph_utils._append_activation_in_dygraph(
2106 2107
                    pre_act, act=self._act
                )
2108

2109 2110 2111
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'LayerNorm'
        )
2112

2113
        inputs = dict()
2114
        inputs['X'] = [input]
2115
        if self._scale:
2116
            inputs['Scale'] = [self.weight]
2117
        if self._shift:
2118 2119 2120
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
2121
            "begin_norm_axis": self._begin_norm_axis,
2122 2123
        }

2124 2125
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
2126 2127
            dtype=self._dtype, stop_gradient=True
        )
2128
        variance_out = self._helper.create_variable_for_type_inference(
2129 2130
            dtype=self._dtype, stop_gradient=True
        )
2131
        layer_norm_out = self._helper.create_variable_for_type_inference(
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
            self._dtype
        )

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis,
            },
        )
2148

2149
        return self._helper.append_activation(layer_norm_out, act=self._act)
2150 2151


M
minqiyang 已提交
2152 2153 2154
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
2155

D
DuYao 已提交
2156 2157
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
2158
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
2159
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
2170
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

2196
    Parameters:
L
lujun 已提交
2197
        size (int): The input dimension value.
D
DuYao 已提交
2198
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
2199 2200
            hidden-hidden weight matrix.

D
DuYao 已提交
2201
            **Note**:
2202

D
DuYao 已提交
2203
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
2204 2205
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
2206
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
2207 2208 2209 2210


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
2211
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
2212 2213 2214
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
2215 2216 2217 2218 2219
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
2220
            is initialized zero. The default value is None.
L
lujun 已提交
2221
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
2222
                             The default value is 'tanh'.
L
lujun 已提交
2223
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
2224 2225 2226
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
2227

D
DuYao 已提交
2228 2229 2230 2231
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2232

M
minqiyang 已提交
2233
    Returns:
D
DuYao 已提交
2234 2235
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
2236
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
2237
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
2251
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
2252 2253 2254
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
2255
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
2256 2257 2258
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
2259 2260
    """

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
    def __init__(
        self,
        size,
        param_attr=None,
        bias_attr=None,
        activation='tanh',
        gate_activation='sigmoid',
        origin_mode=False,
        dtype='float32',
    ):
2271
        super(GRUUnit, self).__init__()
2272
        self._bias_attr = bias_attr
M
minqiyang 已提交
2273 2274 2275 2276
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2277 2278
            relu=3,
        )
H
Hongyu Liu 已提交
2279 2280
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2281

M
minqiyang 已提交
2282
        self._dtype = dtype
M
minqiyang 已提交
2283 2284
        size = size // 3
        # create weight
2285 2286 2287
        self.weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype
        )
M
minqiyang 已提交
2288 2289

        # create bias
M
minqiyang 已提交
2290
        bias_size = [1, 3 * size]
2291
        self._bias_size = bias_size
2292 2293 2294
        self.bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
M
minqiyang 已提交
2295

M
minqiyang 已提交
2296
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2297
        if _non_static_mode():
2298
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
2299 2300 2301 2302 2303 2304 2305 2306 2307
                input,
                hidden,
                self.weight,
                self.bias,
                'activation',
                self.activation,
                'gate_activation',
                self.gate_activation,
            )
2308 2309
            return updated_hidden, reset_hidden_pre, gate

2310 2311 2312 2313 2314 2315
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'GRUUnit'
        )
        check_variable_and_dtype(
            hidden, 'hidden', ['float32', 'float64'], 'GRUUnit'
        )
2316 2317 2318
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
2319
            'Weight': [self.weight],
2320
        }
2321
        if self.bias is not None:
2322
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2323 2324
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
2325 2326
            self._dtype
        )
M
minqiyang 已提交
2327
        updated_hidden = self._helper.create_variable_for_type_inference(
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
            self._dtype
        )
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': self.activation,
                'gate_activation': self.gate_activation,
            },
        )
M
minqiyang 已提交
2343 2344

        return updated_hidden, reset_hidden_pre, gate
2345 2346 2347 2348


class NCE(layers.Layer):
    """
2349 2350 2351 2352 2353
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2354
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2355

2356
    Parameters:
2357 2358
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2359
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2360 2361 2362
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2363
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2364 2365 2366 2367
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2368
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2369
        sampler (str, optional): The sampler used to sample class from negative classes.
2370 2371
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2372
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2373
                       It is used when sampler is set to 'custom_dist'.
2374
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2375
                       Default: None.
2376 2377
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2378
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2379

2380 2381
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2382

2383
        **bias** (Parameter or None): the learnable bias of this layer.
2384

2385
    Returns:
2386
        None
2387 2388 2389 2390

    Examples:
        .. code-block:: python

2391 2392 2393
            import numpy as np
            import paddle.fluid as fluid

2394
            window_size = 5
2395 2396
            dict_size = 20
            label_word = int(window_size // 2) + 1
2397
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2419
                nce = fluid.NCE(
2420
                             num_total_classes=dict_size,
2421
                             dim=embs3.shape[1],
2422 2423 2424 2425 2426 2427 2428
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2429 2430
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2431 2432 2433

    """

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
    def __init__(
        self,
        num_total_classes,
        dim,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None,
        sampler="uniform",
        custom_dist=None,
        seed=0,
        is_sparse=False,
        dtype='float32',
    ):
2448
        super(NCE, self).__init__()
2449 2450 2451
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2452
        self._dtype = dtype
2453
        self._inputs = dict()
2454 2455 2456
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
2512 2513
                    default_initializer=NumpyArrayInitializer(numpy_array),
                )
2514 2515 2516 2517
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
2518 2519
                np.array(custom_dist).astype('float32')
            )
2520
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
2521 2522
                np.array(alias_).astype('int32')
            )
2523
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
2524 2525
                np.array(alias_probs_).astype('float32')
            )
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
2545
            'remote_prefetch': remote_prefetch,
2546 2547
        }

2548
        self.weight = self.create_parameter(
2549 2550 2551
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2552 2553
            dtype=self._dtype,
        )
2554
        if self._bias_attr:
2555
            self.bias = self.create_parameter(
2556 2557 2558
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2559 2560
                dtype=self._dtype,
            )
2561 2562
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2563

2564
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2565
        if _non_static_mode():
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
            attrs = (
                'num_total_classes',
                self._attrs['num_total_classes'],
                'num_neg_samples',
                self._attrs['num_neg_samples'],
                'seed',
                self._attrs['seed'],
                'sampler',
                self._attrs['sampler'],
                'is_sparse',
                self._attrs['is_sparse'],
                'remote_prefetch',
                self._attrs['remote_prefetch'],
            )
            cost, _, _ = _legacy_C_ops.nce(
                input,
                label,
                self.weight,
                self.bias,
                self._inputs['SampleWeight'],
                self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'],
                *attrs
            )
W
Weilong Wu 已提交
2591 2592
            return cost / (self._num_neg_samples + 1)

2593 2594
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
2595 2596 2597
        check_type(
            sample_weight, 'sample_weight', (Variable, type(None)), 'NCE'
        )
2598 2599 2600 2601 2602
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
2603 2604 2605
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2606 2607

        cost = self._helper.create_variable_for_type_inference(
2608 2609
            dtype=input.dtype
        )
2610
        sample_logits = self._helper.create_variable_for_type_inference(
2611 2612
            dtype=input.dtype
        )
2613
        sample_labels = self._helper.create_variable_for_type_inference(
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
            dtype=label.dtype
        )

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels,
            },
            attrs=self._attrs,
        )
2627 2628 2629 2630
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2631
    r"""
2632 2633 2634 2635
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2636 2637 2638 2639 2640
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2641
    Parameters:
L
lujun 已提交
2642
        mode (str): The mode for weight sharing. It supports all, channel
2643 2644 2645
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2646 2647 2648
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2649
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2650 2651
          This argument is required when mode is "element".
          Default: None.
2652 2653
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2654
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2655

2656 2657
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2658

2659
    Returns:
2660
        None
2661 2662 2663 2664 2665

    Examples:

        .. code-block:: python

L
lujun 已提交
2666
          import paddle.fluid as fluid
2667
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2668 2669 2670 2671
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2672
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2684
                 input_shape=inp_np.shape,
L
lujun 已提交
2685
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2686
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2687

2688 2689
    """

2690 2691 2692 2693 2694 2695 2696 2697
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
2698 2699
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2700 2701
        self._mode = mode
        self._param_attr = param_attr
2702
        self._dtype = dtype
S
songyouwei 已提交
2703 2704 2705 2706
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
2707 2708 2709
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2710
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2711
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2712
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
2713
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2714
        elif mode == 'element':
2715
            assert isinstance(
2716 2717
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2718 2719 2720
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2721 2722 2723 2724 2725 2726 2727
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
2728 2729

    def forward(self, input):
2730 2731 2732
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2733
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2734
        out = self._helper.create_variable_for_type_inference(self._dtype)
2735 2736 2737 2738 2739 2740
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
2741 2742 2743 2744
        return out


class BilinearTensorProduct(layers.Layer):
2745
    r"""
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2760
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2761

2762
    Parameters:
2763 2764 2765 2766 2767
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2768
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
2769
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
2770 2771
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2772
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2773
           If it is set to None, the bias is initialized zero. The default value is None.
2774
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2775

D
DuYao 已提交
2776 2777 2778 2779
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2780

2781
    Returns:
W
wanghuancoder 已提交
2782
       Tensor: A 2-D Tensor of shape [batch_size, size].
2783 2784 2785 2786

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2796

2797 2798
    """

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
2810
        super(BilinearTensorProduct, self).__init__()
2811 2812 2813 2814
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2815 2816 2817
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2818
        self._inputs = dict()
2819
        self._dtype = dtype
2820

2821
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2822 2823 2824 2825 2826 2827
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
2828
        bias_size = [1, self._output_dim]
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
2841
    def forward(self, x, y):
2842 2843 2844 2845 2846 2847
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
2848
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2849
        if self.bias is not None:
2850
            self._inputs["Bias"] = self.bias
2851
        if self._name is not None:
2852 2853 2854 2855 2856
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
2857
        else:
2858 2859 2860 2861 2862 2863 2864 2865
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
2866 2867

        # add activation
2868
        return self._helper.append_activation(out, act=self._act)
2869 2870 2871


class Conv2DTranspose(layers.Layer):
2872
    r"""
2873 2874
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2875
    The convolution2D transpose layer calculates the output based on the input,
2876 2877 2878
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2879 2880
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2881 2882
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2883 2884 2885
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2886 2887
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2888 2889 2890 2891 2892 2893 2894 2895 2896

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2897 2898
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2899
    * :math:`\\ast`: Convolution operation.
2900
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2925
    Parameters:
2926
        num_channels(int): The number of channels in the input image.
2927
        num_filters(int): The number of the filter. It is as same as the output
2928
            feature map.
2929 2930 2931
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2932
        output_size(int or tuple, optional): The output image size. If output size is a
2933 2934 2935
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2936
            should follow the formula above. Default: None.
2937
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2938
            contain two integers, (padding_H, padding_W). Otherwise, the
2939 2940
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2941
            contain two integers, (stride_H, stride_W). Otherwise, the
2942 2943
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2944
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2945
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2946
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2947 2948 2949 2950
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2951 2952
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2953 2954 2955
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2956
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2957 2958 2959 2960
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2961
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2962
            library is installed. Default: True.
2963
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2964
            Default: None.
2965
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2966

2967 2968
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2969

2970
        **bias** (Parameter or None): the learnable bias of this layer.
2971

2972 2973
    Returns:
        None
2974 2975 2976 2977

    Examples:
       .. code-block:: python

2978
          import paddle.fluid as fluid
2979
          import numpy as np
2980 2981

          with fluid.dygraph.guard():
2982
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2983
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2984
                    num_channels=32, num_filters=2, filter_size=3)
2985 2986
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2987 2988
    """

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
3005
        super(Conv2DTranspose, self).__init__()
3006 3007 3008
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
3009 3010
        self._param_attr = param_attr
        self._bias_attr = bias_attr
3011
        self._act = act
3012
        self._groups = groups
3013
        self._num_channels = num_channels
3014 3015 3016 3017 3018 3019 3020
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
3021
        self._dtype = dtype
3022

3023 3024 3025 3026 3027
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
3028
            self._op_type = 'depthwise_conv2d_transpose'
3029 3030
        else:
            self._op_type = 'conv2d_transpose'
3031 3032 3033 3034 3035

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

3036
        self._filter_size = utils.convert_to_list(
3037 3038
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
3039 3040 3041

        if self._output_size is None:
            self._output_size = []
3042 3043 3044
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
3045 3046
                    self._output_size
                )
3047 3048
            else:
                self._output_size = utils.convert_to_list(
3049 3050
                    self._output_size, 2, 'output_size'
                )
3051
        elif isinstance(self._output_size, int):
3052 3053 3054
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
3055
        elif isinstance(self._output_size, Variable):
3056 3057 3058 3059 3060 3061
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
3062
            if len(self._output_size.shape) == 1 and (
3063 3064 3065
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
3066 3067 3068 3069
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
3070 3071
                    "output_size must contain one or two integers."
                )
3072
        else:
3073
            raise ValueError("output_size should be list or int or Tensor")
3074 3075
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
3076 3077 3078 3079
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
3080

3081 3082 3083
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
3084

3085 3086 3087 3088 3089 3090
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
3091

3092
    def forward(self, input):
J
Jiabin Yang 已提交
3093
        if _non_static_mode():
3094
            op = getattr(_legacy_C_ops, self._op_type)
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
3111
            pre_bias = out
3112
            pre_act = dygraph_utils._append_bias_in_dygraph(
3113 3114 3115 3116 3117
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
3118

3119 3120 3121
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
3122

3123 3124 3125 3126 3127 3128 3129
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
3130
            'use_cudnn': self._use_cudnn,
3131 3132
        }

3133
        pre_bias = self._helper.create_variable_for_type_inference(
3134 3135 3136 3137 3138 3139 3140 3141
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
3142

3143
        if self.bias is not None:
3144
            pre_act = self._helper.create_variable_for_type_inference(
3145 3146 3147 3148 3149 3150 3151 3152
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
3153 3154 3155 3156
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
3157 3158 3159 3160 3161 3162 3163 3164 3165
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

3166
    Parameters:
L
lujun 已提交
3167
        name_scope(str): The name of this class.
3168
        num_filters (int): number of filters.
L
lujun 已提交
3169 3170 3171
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

3184 3185 3186 3187
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

3188 3189 3190 3191
    Returns:
        Variable: output of sequence_conv
    """

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
3205
        ), "SequenceConv is not supported by dynamic graph mode yet!"
3206 3207 3208 3209 3210 3211 3212
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3213
        self._act = act
3214

3215
    def _build_once(self, input):
3216 3217
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
3218 3219 3220
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
3221

3222 3223 3224 3225 3226 3227
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
3228

3229 3230
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
3244

3245
        if self.bias is not None:
3246
            pre_act = self._helper.create_variable_for_type_inference(
3247 3248 3249 3250 3251 3252 3253 3254
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
3255 3256 3257 3258
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
3259 3260 3261


class RowConv(layers.Layer):
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

3280
    Parameters:
L
lujun 已提交
3281
        name_scope(str): The name of this class.
3282 3283 3284
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
3285 3286
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
3287

3288 3289 3290
    Attributes:
        weight (Parameter): the learnable weights of this layer.

3291
    Returns:
L
lujun 已提交
3292 3293
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

3309 3310 3311 3312 3313
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
3314
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
3315 3316 3317 3318 3319
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

3320
    def _build_once(self, input):
L
lujun 已提交
3321 3322
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
3323 3324 3325 3326 3327 3328
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3329 3330 3331

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
3332 3333 3334 3335 3336
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
3337 3338 3339 3340 3341
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
3342
    :alias_main: paddle.nn.GroupNorm
3343 3344
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
3345

3346 3347 3348 3349 3350 3351
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
3352
        channels(int): The number of channels of input.
3353 3354 3355 3356 3357 3358 3359 3360 3361
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
3362
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
3376
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
3377
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
3378 3379 3380

    """

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
3392
        super(GroupNorm, self).__init__()
L
lujun 已提交
3393 3394 3395
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3396
        self._channels = channels
L
lujun 已提交
3397 3398
        self._groups = groups
        self._act = act
3399
        self._dtype = dtype
L
lujun 已提交
3400 3401 3402
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3403
        param_shape = [self._channels]
L
lujun 已提交
3404

3405 3406 3407 3408 3409 3410
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
3411

3412 3413 3414 3415 3416 3417
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
3418 3419

    def forward(self, input):
3420
        mean_out = self._helper.create_variable_for_type_inference(
3421 3422
            dtype=self._dtype, stop_gradient=True
        )
3423
        variance_out = self._helper.create_variable_for_type_inference(
3424 3425
            dtype=self._dtype, stop_gradient=True
        )
3426
        if in_dygraph_mode():
3427 3428 3429 3430 3431 3432 3433 3434
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
3435

3436 3437 3438
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3439
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3440 3441 3442
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
3443 3444

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
3467 3468

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3469 3470 3471


class SpectralNorm(layers.Layer):
3472
    r"""
3473 3474
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3485
    :attr:`power_iters` should be a positive integer, do following
3486 3487 3488 3489
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3490
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3491

3492
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3493 3494 3495 3496 3497 3498 3499 3500

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3501
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3502 3503 3504 3505


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3506
    Parameters:
3507
        weight_shape(list or tuple): The shape of weight parameter.
3508 3509 3510 3511
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3512
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3513 3514

    Returns:
3515
        None
3516 3517 3518 3519

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3520 3521
            import paddle
            x = paddle.rand((2,8,32,32))
3522

C
Chen Long 已提交
3523 3524 3525 3526
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3527 3528 3529

    """

3530 3531 3532
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
3533
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3534 3535 3536
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3537
        self._dtype = dtype
L
lujun 已提交
3538

3539
        self._weight_shape = list(weight_shape)
3540 3541 3542 3543 3544
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
3545
            "length of `weight_shape`, but received dim="
3546 3547
            "{}".format(dim)
        )
3548 3549
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3550

3551 3552 3553 3554 3555 3556
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3557
        self.weight_u.stop_gradient = True
L
lujun 已提交
3558

3559 3560 3561 3562 3563 3564
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3565
        self.weight_v.stop_gradient = True
L
lujun 已提交
3566 3567

    def forward(self, weight):
3568
        if in_dygraph_mode():
3569 3570 3571 3572 3573 3574 3575 3576
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
3577

3578 3579 3580
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
3581
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3582
        out = self._helper.create_variable_for_type_inference(self._dtype)
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
3595 3596 3597 3598 3599

        return out


class TreeConv(layers.Layer):
3600
    """
3601 3602 3603 3604 3605 3606 3607 3608
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
3609

3610
    Parameters:
3611
        feature_size(int): last dimension of nodes_vector.
3612 3613 3614 3615 3616 3617 3618
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3619
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3620

3621 3622
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3623

3624
        **bias** (Parameter or None): the learnable bias of this layer.
3625

3626 3627
    Returns:
        None
L
lujun 已提交
3628

3629
    Examples:
L
lujun 已提交
3630

3631
        .. code-block:: python
3632

3633 3634
          import paddle.fluid as fluid
          import numpy
3635

3636 3637 3638 3639
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3640
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3641
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3642 3643
    """

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
3656
        super(TreeConv, self).__init__()
L
lujun 已提交
3657
        self._name = name
3658
        self._feature_size = feature_size
L
lujun 已提交
3659 3660 3661 3662 3663 3664
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3665 3666
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3667
        if self._bias_attr:
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3680 3681

    def forward(self, nodes_vector, edge_set):
3682 3683
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3684
        if self._name:
3685 3686 3687
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
3688 3689
        else:
            out = self._helper.create_variable_for_type_inference(
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
3704 3705
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
3706 3707 3708 3709 3710 3711 3712 3713
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
3714 3715 3716
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
3728

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3740
          inp_np = paddle.to_tensor(inp_np)
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3752 3753 3754
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
3755
        return out