nn.py 135.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
W
wanghuancoder 已提交
36
from paddle import _C_ops
37

38
__all__ = [
39
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
40 41
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
42
    'SpectralNorm', 'TreeConv', 'Flatten'
43
]
M
minqiyang 已提交
44 45


X
Xin Pan 已提交
46
class Conv2D(layers.Layer):
47
    r"""
48 49
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
50 51 52
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
53 54 55
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
56
    and W is the width of the filter. If the groups is greater than 1,
57
    C will equal the number of input feature map divided by the groups.
58
    Please refer to UFLDL's `convolution
59
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
60
    for more details.
61 62 63 64 65 66 67 68
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

69
        Out = \\sigma (W \\ast X + b)
70 71 72

    Where:

73 74
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
75
    * :math:`\\ast`: Convolution operation.
76
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

99
    Parameters:
100
        num_channels(int): The number of channels in the input image.
101
        num_filters(int): The number of filter. It is as same as the output
102 103
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
104 105
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
106
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
107
            contain two integers, (stride_H, stride_W). Otherwise, the
108 109
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
110
            contain two integers, (padding_H, padding_W). Otherwise, the
111 112
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
113
            contain two integers, (dilation_H, dilation_W). Otherwise, the
114
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
115
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
116 117 118
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
119 120
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
121 122 123 124
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
125
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
126 127 128 129
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
130 131 132 133 134
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
135

136 137 138 139
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
140

141 142 143
    Returns:
        None
    
144
    Raises:
145
        ValueError: if ``use_cudnn`` is not a bool value.
146 147 148

    Examples:
        .. code-block:: python
L
lujun 已提交
149

150 151 152 153 154
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

155
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
156
          with fluid.dygraph.guard():
157
              conv2d = Conv2D(3, 2, 3)
158 159
              data = to_variable(data)
              conv = conv2d(data)
160 161 162

    """

M
minqiyang 已提交
163
    def __init__(self,
164
                 num_channels,
M
minqiyang 已提交
165 166 167 168 169 170 171 172
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
173 174 175
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
176
        assert param_attr is not False, "param_attr should not be False here."
177
        super(Conv2D, self).__init__()
178 179 180 181 182

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

183
        self._num_channels = num_channels
M
minqiyang 已提交
184 185 186 187
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
188
        self._act = act
M
minqiyang 已提交
189 190 191
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
192
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
193 194 195 196 197
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
198

199
        if (self._num_channels == self._groups and
200 201
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
202 203 204
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
205

206 207 208 209
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
            if (self._num_channels == self._groups and
                    self._num_channels == self._num_filters):
210
                self._l_type = 'depthwise_conv2d'
211
            else:
212
                self._l_type = 'conv2d'
213

214
        self._num_channels = num_channels
215 216
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
217
        else:
218
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
219
                raise ValueError("num_channels must be divisible by groups.")
220 221
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
222
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
223 224

        def _get_default_param_initializer():
225 226
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
227 228 229
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

230
        self.weight = self.create_parameter(
231
            attr=self._param_attr,
M
minqiyang 已提交
232 233 234 235
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

236
        self.bias = self.create_parameter(
237 238
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
239 240
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
241 242

    def forward(self, input):
243 244
        if in_dygraph_mode() and (self._l_type == 'conv2d' or
                                  self._l_type == 'depthwise_conv2d'):
245 246
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
247 248
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
W
wanghuancoder 已提交
249
            out = _C_ops.conv2d(input, self.weight, *attrs)
250 251
            pre_bias = out

252 253 254 255
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
256 257
        inputs = {
            'Input': [input],
258
            'Filter': [self.weight],
259 260 261 262 263 264 265
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
266
            'use_mkldnn': self._use_mkldnn,
267
        }
268 269 270

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
271 272 273
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
274 275 276 277
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
278
                'Filter': self.weight,
M
minqiyang 已提交
279
            },
M
minqiyang 已提交
280
            outputs={"Output": pre_bias},
281
            attrs=attrs)
M
minqiyang 已提交
282

283
        if self.bias is not None:
284 285 286 287 288
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
289
                        'Y': [self.bias]},
290
                outputs={'Out': [pre_act]},
291 292
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
293 294
        else:
            pre_act = pre_bias
M
minqiyang 已提交
295

L
lujun 已提交
296
        # Currently, we don't support inplace in dygraph mode
297
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
298 299


L
lujun 已提交
300
class Conv3D(layers.Layer):
301
    r"""
302 303 304 305
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
306 307
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
308 309 310 311 312 313 314 315 316 317 318 319 320 321
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
322
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

348
    Parameters:
349
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
350
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
351
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
352
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
353 354 355
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
356
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
357 358
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
359
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
360 361
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
362
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
363
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
364
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
365 366 367
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
368 369
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
370 371 372
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
373 374
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
375 376 377
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
378 379 380 381 382
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
383
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
384

D
DuYao 已提交
385 386 387 388
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
389

390
    Returns:
D
DuYao 已提交
391
        None.
392 393 394 395 396 397 398 399

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

400 401 402 403 404 405
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
406
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
407 408
              ret = conv3d(fluid.dygraph.base.to_variable(data))

409 410
    """

L
lujun 已提交
411
    def __init__(self,
412
                 num_channels,
L
lujun 已提交
413 414 415 416 417 418 419 420 421
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
422 423
                 act=None,
                 dtype='float32'):
L
lujun 已提交
424
        assert param_attr is not False, "param_attr should not be False here."
425 426
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
427 428 429
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
430
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
431 432
        self._act = act
        self._use_cudnn = use_cudnn
433 434 435 436
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
437
        self._dtype = dtype
438 439

        if self._groups is None:
440
            num_filter_channels = self._num_channels
L
lujun 已提交
441
        else:
442
            if self._num_channels % self._groups != 0:
L
lujun 已提交
443
                raise ValueError("num_channels must be divisible by groups.")
444
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
445

446 447
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
448 449 450

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
451
                2] * self._num_channels
L
lujun 已提交
452 453 454
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

455
        self.weight = self.create_parameter(
456
            attr=self._param_attr,
L
lujun 已提交
457 458 459 460
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

461
        self.bias = self.create_parameter(
462 463
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
464 465 466 467 468 469 470 471
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
472
            type='conv3d',
L
lujun 已提交
473 474
            inputs={
                'Input': input,
475
                'Filter': self.weight,
L
lujun 已提交
476 477 478 479 480 481 482 483 484 485 486
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

487
        if self.bias is not None:
488 489 490 491 492
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
493
                        'Y': [self.bias]},
494 495 496 497
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
498 499 500 501 502

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
503
    r"""
L
lujun 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
568

569
    Parameters:
570
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
571 572
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
573
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
574
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
575
            Otherwise, the filter will be a square.
D
DuYao 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
591
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
592
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
593
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
594 595 596 597
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
598 599
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
600 601
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
602 603
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
604 605 606
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
607 608 609 610 611 612 613
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
614

D
DuYao 已提交
615 616 617 618
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
619

L
lujun 已提交
620
    Returns:
D
DuYao 已提交
621
        None.
L
lujun 已提交
622 623 624 625 626 627 628 629

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

630 631 632 633 634 635
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
636
                    num_channels=3,
637 638 639 640 641
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
642 643
    """

L
lujun 已提交
644
    def __init__(self,
645
                 num_channels,
L
lujun 已提交
646
                 num_filters,
647
                 filter_size,
L
lujun 已提交
648 649 650 651 652 653 654 655
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
656 657
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
658 659 660 661 662 663 664
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
665
        self._num_channels = num_channels
L
lujun 已提交
666 667 668 669 670 671
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
672
        self._dtype = dtype
L
lujun 已提交
673

674 675
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
676

677 678
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
679
        self.weight = self.create_parameter(
L
lujun 已提交
680
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
681 682 683 684 685
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
686 687 688 689 690 691 692

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
693
                    'Filter': [self.weight]},
L
lujun 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
709
                        'Y': [self.bias]},
L
lujun 已提交
710 711 712 713 714 715 716 717 718
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
719
class Pool2D(layers.Layer):
720
    r"""
721

722 723 724 725 726
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
727 728
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

774
    Parameters:
775
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
776
            it must contain two integers, (pool_size_Height, pool_size_Width).
777 778 779 780
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
781
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
782 783 784
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
785
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
786 787 788 789 790 791 792
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
793 794 795 796
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
797 798

    Returns:
799
        None
800 801

    Raises:
802 803 804 805
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
806 807 808 809 810

    Examples:

        .. code-block:: python

L
lujun 已提交
811
          import paddle.fluid as fluid
812 813
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
814 815

          with fluid.dygraph.guard():
816
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
817
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
818 819 820
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
821
             pool2d_res = pool2d(to_variable(data))
822 823 824

    """

M
minqiyang 已提交
825 826 827 828 829 830 831 832
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
833 834 835 836
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

850
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
851

852 853 854 855 856
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

857
        super(Pool2D, self).__init__()
M
minqiyang 已提交
858 859 860 861 862 863 864 865 866 867

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
868
        self._data_format = data_format
M
minqiyang 已提交
869 870 871
        self._l_type = 'pool2d'

    def forward(self, input):
872 873 874 875 876
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
877 878
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
W
wanghuancoder 已提交
879
            return _C_ops.pool2d(input, *attrs)
880

881 882 883 884
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

885 886 887 888 889 890 891 892
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
893
            "use_mkldnn": self._use_mkldnn,
894
            "exclusive": self._exclusive,
895
            "data_format": self._data_format,
896 897 898
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
899 900
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
901 902 903
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
904
            outputs={"Out": pool_out},
905
            attrs=attrs)
M
minqiyang 已提交
906
        return pool_out
M
minqiyang 已提交
907 908


S
songyouwei 已提交
909 910
class Linear(layers.Layer):
    """
911
    
S
songyouwei 已提交
912 913 914 915 916 917 918 919
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

920
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

979
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
980

S
songyouwei 已提交
981
    def forward(self, input):
982
        if in_dygraph_mode():
983
            pre_bias = _varbase_creator(dtype=input.dtype)
W
wanghuancoder 已提交
984 985 986
            _C_ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
                          'transpose_Y', False, "alpha", 1, "use_mkldnn",
                          self._use_mkldnn)
987
            pre_act = dygraph_utils._append_bias_in_dygraph(
988 989 990 991
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
992

993 994
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
995 996 997 998

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

999
        attrs = {
S
songyouwei 已提交
1000 1001 1002
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1003
            "use_mkldnn": self._use_mkldnn,
1004 1005
        }
        inputs = {"X": [input], "Y": [self.weight]}
1006

S
songyouwei 已提交
1007 1008
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
1009
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
1010
        if self.bias is not None:
S
songyouwei 已提交
1011 1012 1013 1014 1015 1016 1017
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1018 1019 1020 1021
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1022 1023 1024 1025 1026
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1027
class InstanceNorm(layers.Layer):
1028
    r"""
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1059
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1060 1061 1062
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1063 1064
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1065 1066 1067
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1068
             If it is set to False, will not create bias_attr. Default: None.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1103 1104
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1105 1106 1107 1108 1109
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1126 1127 1128

    def forward(self, input):
        if in_dygraph_mode():
W
wanghuancoder 已提交
1129 1130
            out, _, _ = _C_ops.instance_norm(input, self.scale, self.bias,
                                             'epsilon', self._epsilon)
1131 1132 1133 1134 1135 1136 1137
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1138 1139 1140 1141
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1161
class BatchNorm(layers.Layer):
1162
    r"""
1163

1164 1165 1166 1167 1168
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1169 1170 1171 1172
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1173 1174
    When use_global_stats = False, the :math:`\mu_{\beta}` 
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1175
    Calculated as follows:
1176 1177 1178

    ..  math::

1179 1180 1181 1182
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1183

1184 1185
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1186 1187 1188

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1189 1190 1191 1192 1193 1194
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1195

1196 1197
    The normalization function formula is as follows:
 
1198 1199
    ..  math::

1200 1201 1202 1203
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1204

1205 1206 1207
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1208

1209
    Parameters:
1210
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1211
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1212 1213 1214
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1215 1216 1217
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1218 1219 1220
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1221
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1222 1223 1224
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1225 1226 1227 1228 1229 1230
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1231 1232
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1233
        use_global_stats(bool, optional): Whether to use global mean and
1234 1235 1236
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1237 1238 1239 1240
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1241 1242

    Returns:
1243
        None
1244 1245 1246

    Examples:
        .. code-block:: python
L
lujun 已提交
1247 1248

          import paddle.fluid as fluid
1249 1250
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1251

1252
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1253
          with fluid.dygraph.guard():
1254
              x = to_variable(x)
1255
              batch_norm = fluid.BatchNorm(10)
1256
              hidden1 = batch_norm(x)
1257 1258
    """

M
minqiyang 已提交
1259 1260 1261 1262 1263 1264 1265 1266
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1267
                 dtype='float32',
M
minqiyang 已提交
1268 1269 1270 1271
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1272
                 do_model_average_for_mean_and_var=True,
1273 1274
                 use_global_stats=False,
                 trainable_statistics=False):
1275
        super(BatchNorm, self).__init__()
1276
        self._param_attr = param_attr
1277
        self._bias_attr = bias_attr
1278
        self._act = act
1279
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1280 1281 1282

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1283 1284
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1285 1286 1287 1288 1289 1290
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1291
        self.weight = self.create_parameter(
1292
            attr=self._param_attr,
M
minqiyang 已提交
1293 1294 1295
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1296
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1297

1298
        self.bias = self.create_parameter(
1299
            attr=self._bias_attr,
M
minqiyang 已提交
1300 1301 1302
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1303
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1304

1305
        self._mean = self.create_parameter(
M
minqiyang 已提交
1306 1307 1308 1309 1310 1311 1312
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1313
        self._mean.stop_gradient = True
M
minqiyang 已提交
1314

1315
        self._variance = self.create_parameter(
M
minqiyang 已提交
1316 1317 1318 1319 1320 1321 1322
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1323
        self._variance.stop_gradient = True
M
minqiyang 已提交
1324 1325

        self._in_place = in_place
1326
        self._data_layout = data_layout
M
minqiyang 已提交
1327 1328 1329
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1330
        self._fuse_with_relu = False
M
minqiyang 已提交
1331
        self._use_global_stats = use_global_stats
1332
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1333 1334 1335 1336 1337 1338 1339

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1340 1341 1342

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1343
                     "is_test", not self.training, "data_layout",
1344 1345
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1346 1347
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
W
wanghuancoder 已提交
1348
            batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
1349 1350 1351
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
1352
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1353

1354 1355 1356
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1357 1358 1359 1360 1361 1362 1363
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1364 1365
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1366
        }
M
minqiyang 已提交
1367

1368 1369 1370 1371 1372 1373 1374 1375
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1376 1377 1378 1379
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1380 1381
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1382

1383 1384
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1385 1386 1387 1388 1389 1390 1391 1392

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1393
        if reserve_space is not None:
1394
            outputs["ReserveSpace"] = [reserve_space]
1395

M
minqiyang 已提交
1396
        self._helper.append_op(
1397
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1398

L
lujun 已提交
1399
        # Currently, we don't support inplace in dygraph mode
1400
        return self._helper.append_activation(batch_norm_out, self._act)
1401 1402


1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1482 1483 1484
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
W
wanghuancoder 已提交
1499
            out, mask = _C_ops.dropout(input, *attrs)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1515
class Embedding(layers.Layer):
1516
    r"""
1517 1518 1519 1520
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1521 1522
    **Embedding Layer**

Z
zhongpu 已提交
1523 1524 1525 1526 1527 1528
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1529 1530
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1531

1532
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1533 1534 1535 1536 1537 1538 1539
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1540 1541
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1555

1556
    Parameters:
L
lujun 已提交
1557 1558
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1577
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1578 1579 1580
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1581

Z
zhongpu 已提交
1582 1583
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1584

1585
    Returns:
Z
zhongpu 已提交
1586
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1587 1588

    Examples:
1589

1590 1591
        .. code-block:: python

L
lujun 已提交
1592 1593 1594 1595
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1596
          # example 1
1597 1598
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1599 1600
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1601
              emb = fluid.dygraph.Embedding(
1602 1603 1604
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1605
              static_rlt3 = emb(base.to_variable(inp_word))
1606
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1621 1622
    """

1623 1624 1625 1626 1627 1628 1629
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1630
        super(Embedding, self).__init__()
1631 1632 1633 1634
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1635
            size[0] + padding_idx)
1636 1637 1638

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1639
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1640 1641 1642
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1643
        self.weight = self.create_parameter(
1644 1645 1646 1647 1648 1649
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1650
        if in_dygraph_mode():
W
wanghuancoder 已提交
1651
            return _C_ops.lookup_table_v2(
1652 1653 1654 1655
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1656 1657 1658
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1659 1660 1661 1662 1663 1664
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1665

1666 1667
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1668
            type='lookup_table_v2',
1669
            inputs={'Ids': input,
1670
                    'W': self.weight},
1671
            outputs={'Out': out},
1672
            attrs=attrs)
1673 1674

        return out
M
minqiyang 已提交
1675 1676


1677
class LayerNorm(layers.Layer):
1678
    r"""
1679 1680 1681 1682
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1683 1684 1685
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1686
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1687

1688
    The formula is as follows:
1689

1690
    ..  math::
1691

1692
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1693

1694
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1695

1696
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1697

1698 1699 1700 1701 1702
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1703

1704
    Parameters:
1705 1706 1707 1708
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1709
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1710
            normalization. Default: True.
1711
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1712
            normalization. Default: True.
1713
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1714
            division by zero. Default: 1e-05.
1715
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1716 1717 1718
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1719
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1720
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1721 1722 1723
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1724
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1725
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1726
                  Default: None.
1727 1728
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1729
    Returns:
1730
        None
1731

1732
    Examples:
1733

1734 1735 1736
        .. code-block:: python

          import paddle.fluid as fluid
1737
          from paddle.fluid.dygraph.base import to_variable
1738 1739
          import numpy

1740
          x = numpy.random.random((3, 32, 32)).astype('float32')
1741
          with fluid.dygraph.guard():
1742
              x = to_variable(x)
1743
              layerNorm = fluid.LayerNorm([32, 32])
1744
              ret = layerNorm(x)
1745

1746
    """
1747

1748
    def __init__(self,
1749
                 normalized_shape,
1750 1751 1752 1753 1754
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1755 1756 1757 1758 1759
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1760

1761
        self._normalized_shape = list(normalized_shape)
1762 1763 1764 1765 1766 1767
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1768 1769
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1770
        if self._scale:
1771
            self.weight = self.create_parameter(
1772 1773 1774 1775
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1776 1777
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1778
                logging.warn("param_attr are only available with scale is True")
1779
            self.weight = None
1780

1781 1782
        if self._shift:
            assert self._bias_attr is not False
1783
            self.bias = self.create_parameter(
1784 1785 1786 1787
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1788 1789
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1790
                logging.warn("bias_attr are only available with shift is True")
1791
            self.bias = None
1792 1793

    def forward(self, input):
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1805 1806

        if in_dygraph_mode():
W
wanghuancoder 已提交
1807
            pre_act, _, _ = _C_ops.layer_norm(
1808 1809 1810 1811 1812
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1813 1814 1815
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1816
        inputs = dict()
1817
        inputs['X'] = [input]
1818
        if self._scale:
1819
            inputs['Scale'] = [self.weight]
1820
        if self._shift:
1821 1822 1823 1824 1825 1826
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1848
        return self._helper.append_activation(layer_norm_out, act=self._act)
1849 1850


M
minqiyang 已提交
1851 1852 1853
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1854 1855 1856 1857 1858
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1869
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1895
    Parameters:
L
lujun 已提交
1896
        size (int): The input dimension value.
D
DuYao 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1906 1907 1908 1909


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1910 1911 1912 1913
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1914 1915 1916 1917 1918
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1919
            is initialized zero. The default value is None.
L
lujun 已提交
1920
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1921
                             The default value is 'tanh'.
L
lujun 已提交
1922
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1923 1924 1925
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1926

D
DuYao 已提交
1927 1928 1929 1930
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1931

M
minqiyang 已提交
1932
    Returns:
D
DuYao 已提交
1933 1934 1935 1936
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1950
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1951 1952 1953
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1954
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1955 1956 1957
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1968
        super(GRUUnit, self).__init__()
1969
        self._bias_attr = bias_attr
M
minqiyang 已提交
1970 1971 1972 1973 1974
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1975 1976
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1977

M
minqiyang 已提交
1978
        self._dtype = dtype
M
minqiyang 已提交
1979 1980
        size = size // 3
        # create weight
1981
        self.weight = self.create_parameter(
M
minqiyang 已提交
1982
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1983 1984

        # create bias
M
minqiyang 已提交
1985
        bias_size = [1, 3 * size]
1986
        self._bias_size = bias_size
1987
        self.bias = self.create_parameter(
M
minqiyang 已提交
1988
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1989

M
minqiyang 已提交
1990
    def forward(self, input, hidden):
1991
        if in_dygraph_mode():
W
wanghuancoder 已提交
1992
            gate, reset_hidden_pre, updated_hidden = _C_ops.gru_unit(
1993 1994 1995 1996
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1997 1998 1999 2000
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2001 2002 2003 2004 2005
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2006
        if self.bias is not None:
2007
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2008 2009 2010 2011 2012
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2022 2023
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2024 2025 2026
            })

        return updated_hidden, reset_hidden_pre, gate
2027 2028 2029 2030


class NCE(layers.Layer):
    """
2031 2032 2033 2034 2035
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2036
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2037

2038
    Parameters:
2039 2040
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2041
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2042 2043 2044
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2045
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2046 2047 2048 2049
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2050
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2051
        sampler (str, optional): The sampler used to sample class from negative classes.
2052 2053
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2054
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2055
                       It is used when sampler is set to 'custom_dist'.
2056
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2057
                       Default: None.
2058 2059
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2060
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2061

2062 2063
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2064

2065 2066
        **bias** (Parameter or None): the learnable bias of this layer.
    
2067
    Returns:
2068
        None
2069 2070 2071 2072

    Examples:
        .. code-block:: python

2073 2074 2075
            import numpy as np
            import paddle.fluid as fluid

2076
            window_size = 5
2077 2078
            dict_size = 20
            label_word = int(window_size // 2) + 1
2079
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2101
                nce = fluid.NCE(
2102
                             num_total_classes=dict_size,
2103
                             dim=embs3.shape[1],
2104 2105 2106 2107 2108 2109 2110
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2111 2112
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2113 2114 2115 2116 2117

    """

    def __init__(self,
                 num_total_classes,
2118
                 dim,
2119
                 sample_weight=None,
2120 2121 2122 2123 2124 2125
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2126 2127 2128
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2129 2130 2131
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2132
        self._dtype = dtype
2133
        self._inputs = dict()
2134
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2222
        self.weight = self.create_parameter(
2223 2224 2225
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2226
            dtype=self._dtype)
2227
        if self._bias_attr:
2228
            self.bias = self.create_parameter(
2229 2230 2231
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2232
                dtype=self._dtype)
2233 2234
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2235

2236
    def forward(self, input, label, sample_weight=None):
W
Weilong Wu 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        if in_dygraph_mode():
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
            cost, _, _ = _C_ops.nce(
                input, label, self.weight, self.bias,
                self._inputs['SampleWeight'], self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'], *attrs)
            return cost / (self._num_neg_samples + 1)

2250 2251 2252 2253
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2281
    r"""
2282 2283 2284 2285
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2286 2287 2288 2289 2290
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2291
    Parameters:
L
lujun 已提交
2292
        mode (str): The mode for weight sharing. It supports all, channel
2293 2294 2295
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2296 2297 2298
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2299
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2300 2301
          This argument is required when mode is "element".
          Default: None.
2302 2303
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2304
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2305

2306 2307 2308
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2309
    Returns:
2310
        None
2311 2312 2313 2314 2315

    Examples:

        .. code-block:: python

L
lujun 已提交
2316
          import paddle.fluid as fluid
2317
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2318 2319 2320 2321
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2322
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2334
                 input_shape=inp_np.shape,
L
lujun 已提交
2335
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2336
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2337

2338 2339
    """

S
songyouwei 已提交
2340 2341 2342 2343 2344
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2345
                 dtype='float32'):
2346 2347
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2348 2349
        self._mode = mode
        self._param_attr = param_attr
2350
        self._dtype = dtype
S
songyouwei 已提交
2351 2352 2353 2354 2355 2356
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2357 2358 2359
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2360 2361
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2362 2363 2364 2365 2366 2367 2368
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2369
        self.weight = self.create_parameter(
2370 2371 2372 2373 2374 2375 2376
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2377
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2378 2379 2380 2381
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2382
                    'Alpha': self.weight},
2383 2384 2385 2386 2387 2388
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
2389
    r"""
2390

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2404
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2405

2406
    Parameters:
2407 2408 2409 2410 2411
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2412 2413 2414 2415
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2416
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2417
           If it is set to None, the bias is initialized zero. The default value is None.
2418
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2419

D
DuYao 已提交
2420 2421 2422 2423
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2424

2425
    Returns:
W
wanghuancoder 已提交
2426
       Tensor: A 2-D Tensor of shape [batch_size, size].
2427 2428 2429 2430

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2440

2441 2442 2443
    """

    def __init__(self,
2444 2445 2446
                 input1_dim,
                 input2_dim,
                 output_dim,
2447 2448 2449
                 name=None,
                 act=None,
                 param_attr=None,
2450 2451 2452
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2453 2454 2455 2456
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2457 2458 2459
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2460
        self._inputs = dict()
2461
        self._dtype = dtype
2462

2463
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2464
        self.weight = self.create_parameter(
2465 2466 2467 2468
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2469
        bias_size = [1, self._output_dim]
2470
        self.bias = self.create_parameter(
2471 2472 2473 2474
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2475

2476 2477 2478 2479
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2480
    def forward(self, x, y):
2481 2482 2483 2484
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2485
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2486
        if self.bias is not None:
2487
            self._inputs["Bias"] = self.bias
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2502
        return self._helper.append_activation(out, act=self._act)
2503 2504 2505


class Conv2DTranspose(layers.Layer):
2506
    r"""
2507 2508
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2509
    The convolution2D transpose layer calculates the output based on the input,
2510 2511 2512
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2513 2514
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2515 2516
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2517 2518 2519
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2520 2521
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2522 2523 2524 2525 2526 2527 2528 2529 2530

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2531 2532
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2533
    * :math:`\\ast`: Convolution operation.
2534
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2559
    Parameters:
2560
        num_channels(int): The number of channels in the input image.
2561
        num_filters(int): The number of the filter. It is as same as the output
2562
            feature map.
2563 2564 2565
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2566
        output_size(int or tuple, optional): The output image size. If output size is a
2567 2568 2569
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2570
            should follow the formula above. Default: None.
2571
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2572
            contain two integers, (padding_H, padding_W). Otherwise, the
2573 2574
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2575
            contain two integers, (stride_H, stride_W). Otherwise, the
2576 2577
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2578
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2579
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2580
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2581 2582 2583 2584
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2585 2586
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2587 2588 2589
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2590
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2591 2592 2593 2594
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2595
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2596
            library is installed. Default: True.
2597
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2598
            Default: None.
2599
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2600

2601 2602
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2603

2604
        **bias** (Parameter or None): the learnable bias of this layer.
2605

2606 2607
    Returns:
        None
2608 2609 2610 2611

    Examples:
       .. code-block:: python

2612
          import paddle.fluid as fluid
2613
          import numpy as np
2614 2615

          with fluid.dygraph.guard():
2616
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2617
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2618
                    num_channels=32, num_filters=2, filter_size=3)
2619 2620
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2621 2622 2623
    """

    def __init__(self,
2624
                 num_channels,
2625
                 num_filters,
2626
                 filter_size,
2627 2628 2629 2630 2631 2632 2633 2634
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2635 2636 2637
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2638 2639 2640
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2641
        self._act = act
2642
        self._groups = groups
2643
        self._num_channels = num_channels
2644 2645 2646 2647 2648 2649 2650
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2651
        self._dtype = dtype
2652

2653 2654 2655
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2656
            self._op_type = 'depthwise_conv2d_transpose'
2657 2658
        else:
            self._op_type = 'conv2d_transpose'
2659 2660 2661 2662 2663

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2664 2665
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2677
        filter_shape = [self._num_channels, self._num_filters // self._groups
2678 2679
                        ] + self._filter_size

2680
        self.weight = self.create_parameter(
2681
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2682

2683
        self.bias = self.create_parameter(
2684 2685 2686 2687 2688
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2689
    def forward(self, input):
2690
        if in_dygraph_mode():
W
wanghuancoder 已提交
2691
            op = getattr(_C_ops, self._op_type)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2702 2703 2704 2705
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2716 2717 2718 2719
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2720
            inputs=inputs,
2721
            outputs={'Output': pre_bias},
2722
            attrs=attrs)
2723

2724
        if self.bias is not None:
2725 2726 2727 2728 2729
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2730
                        'Y': [self.bias]},
2731 2732 2733 2734 2735 2736
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2737 2738 2739 2740 2741 2742 2743 2744 2745
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2746
    Parameters:
L
lujun 已提交
2747
        name_scope(str): The name of this class.
2748
        num_filters (int): number of filters.
L
lujun 已提交
2749 2750 2751
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2764 2765 2766 2767
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2781
        assert not in_dygraph_mode(
2782
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2783 2784 2785 2786 2787 2788 2789
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2790
        self._act = act
2791

2792
    def _build_once(self, input):
2793 2794
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2795
        self.weight = self.create_parameter(
2796
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2797

2798
        self.bias = self.create_parameter(
2799 2800 2801 2802 2803
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2804 2805 2806 2807 2808 2809
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2810
                'Filter': [self.weight],
2811 2812 2813 2814 2815 2816 2817
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2818

2819
        if self.bias is not None:
2820 2821 2822 2823 2824
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2825
                        'Y': [self.bias]},
2826 2827 2828 2829 2830 2831
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2832 2833 2834


class RowConv(layers.Layer):
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2853
    Parameters:
L
lujun 已提交
2854
        name_scope(str): The name of this class.
2855 2856 2857
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2858 2859
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2860

2861 2862 2863
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2864
    Returns:
L
lujun 已提交
2865 2866
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2882 2883 2884 2885 2886
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2887
        assert not in_dygraph_mode(
2888
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2889 2890 2891 2892 2893
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2894
    def _build_once(self, input):
L
lujun 已提交
2895 2896
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2897
        self.weight = self.create_parameter(
2898 2899 2900 2901
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2902 2903 2904 2905 2906 2907

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2908
                    'Filter': [self.weight]},
L
lujun 已提交
2909 2910 2911 2912 2913 2914
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2915 2916 2917 2918
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2919 2920 2921 2922 2923 2924
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2925
        channels(int): The number of channels of input.
2926 2927 2928 2929 2930 2931 2932 2933 2934
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2935
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2949
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2950
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2951 2952 2953 2954

    """

    def __init__(self,
2955
                 channels,
L
lujun 已提交
2956 2957 2958 2959 2960
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2961 2962 2963
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2964 2965 2966
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2967
        self._channels = channels
L
lujun 已提交
2968 2969
        self._groups = groups
        self._act = act
2970
        self._dtype = dtype
L
lujun 已提交
2971 2972 2973
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2974
        param_shape = [self._channels]
L
lujun 已提交
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2987 2988

    def forward(self, input):
2989 2990 2991 2992 2993 2994
        if in_dygraph_mode():
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
            out, _, _ = _C_ops.group_norm(input, self.weight, self.bias, *attrs)

            return dygraph_utils._append_activation_in_dygraph(out, self._act)

L
lujun 已提交
2995
        inputs = {'X': input}
2996
        if self.bias is not None:
2997
            inputs['Bias'] = self.bias
2998
        if self.weight is not None:
2999
            inputs['Scale'] = self.weight
L
lujun 已提交
3000 3001

        # create output
3002
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
3024
    r"""
3025 3026
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3037
    :attr:`power_iters` should be a positive integer, do following
3038 3039 3040 3041
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3042
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3043

3044
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3045 3046 3047 3048 3049 3050 3051 3052

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3053
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3054 3055 3056 3057


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3058
    Parameters:
3059
        weight_shape(list or tuple): The shape of weight parameter.
3060 3061 3062 3063
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3064
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3065 3066

    Returns:
3067
        None
3068 3069 3070 3071

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3072 3073
            import paddle
            x = paddle.rand((2,8,32,32))
3074

C
Chen Long 已提交
3075 3076 3077 3078
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3079 3080 3081

    """

3082 3083 3084 3085 3086 3087 3088
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3089 3090 3091
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3092
        self._dtype = dtype
L
lujun 已提交
3093

3094
        self._weight_shape = list(weight_shape)
3095 3096 3097 3098 3099 3100
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3101 3102
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3103

3104
        self.weight_u = self.create_parameter(
L
lujun 已提交
3105 3106 3107 3108
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3109
        self.weight_u.stop_gradient = True
L
lujun 已提交
3110

3111
        self.weight_v = self.create_parameter(
L
lujun 已提交
3112 3113 3114 3115
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3116
        self.weight_v.stop_gradient = True
L
lujun 已提交
3117 3118

    def forward(self, weight):
3119 3120
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3121
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3137
    """
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3148
        feature_size(int): last dimension of nodes_vector.
3149 3150 3151 3152 3153 3154 3155
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3156
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3157

3158 3159
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3160

3161
        **bias** (Parameter or None): the learnable bias of this layer.
3162

3163 3164
    Returns:
        None
L
lujun 已提交
3165

3166
    Examples:
L
lujun 已提交
3167

3168
        .. code-block:: python
3169

3170 3171
          import paddle.fluid as fluid
          import numpy
3172

3173 3174 3175 3176
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3177
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3178
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3179 3180
    """

L
lujun 已提交
3181
    def __init__(self,
3182
                 feature_size,
L
lujun 已提交
3183 3184 3185 3186 3187 3188
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3189 3190 3191
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3192
        self._name = name
3193
        self._feature_size = feature_size
L
lujun 已提交
3194 3195 3196 3197 3198 3199
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3200 3201
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3202
        if self._bias_attr:
3203
            self.bias = self.create_parameter(
L
lujun 已提交
3204 3205 3206 3207
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3208
        self.weight = self.create_parameter(
L
lujun 已提交
3209 3210 3211 3212 3213 3214
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3215 3216
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3228
                'Filter': self.weight
L
lujun 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3238
                        'Y': [self.bias]},
L
lujun 已提交
3239 3240 3241 3242 3243
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3267
          inp_np = paddle.to_tensor(inp_np)
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3279 3280
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3281
        return out