nn.py 141.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    'Conv2D',
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Dropout',
    'Embedding',
    'GRUUnit',
    'InstanceNorm',
    'LayerNorm',
    'NCE',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
71
]
M
minqiyang 已提交
72 73


X
Xin Pan 已提交
74
class Conv2D(layers.Layer):
75
    r"""
76 77
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
78 79 80
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
81 82 83
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
84
    and W is the width of the filter. If the groups is greater than 1,
85
    C will equal the number of input feature map divided by the groups.
86
    Please refer to UFLDL's `convolution
87
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
88
    for more details.
89 90 91 92 93 94 95 96
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

97
        Out = \\sigma (W \\ast X + b)
98 99 100

    Where:

101 102
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
103
    * :math:`\\ast`: Convolution operation.
104
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

127
    Parameters:
128
        num_channels(int): The number of channels in the input image.
129
        num_filters(int): The number of filter. It is as same as the output
130 131
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
132 133
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
134
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
135
            contain two integers, (stride_H, stride_W). Otherwise, the
136 137
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
138
            contain two integers, (padding_H, padding_W). Otherwise, the
139 140
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
141
            contain two integers, (dilation_H, dilation_W). Otherwise, the
142
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
143
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
144 145 146
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
147 148
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
149 150 151 152
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
153
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
154 155 156 157
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
158 159 160 161 162
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
163

164 165 166 167
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
168

169 170
    Returns:
        None
171

172
    Raises:
173
        ValueError: if ``use_cudnn`` is not a bool value.
174 175 176

    Examples:
        .. code-block:: python
L
lujun 已提交
177

178 179 180 181 182
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

183
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
184
          with fluid.dygraph.guard():
185
              conv2d = Conv2D(3, 2, 3)
186 187
              data = to_variable(data)
              conv = conv2d(data)
188 189 190

    """

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
M
minqiyang 已提交
206
        assert param_attr is not False, "param_attr should not be False here."
207
        super(Conv2D, self).__init__()
208

209 210 211 212 213 214
        if (
            core.is_compiled_with_cuda()
            and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
215 216
            use_cudnn = False

217
        self._num_channels = num_channels
M
minqiyang 已提交
218 219 220 221
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
222
        self._act = act
M
minqiyang 已提交
223 224 225
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
226
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
227 228 229 230 231
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
232

233 234 235 236 237 238
        if (
            self._num_channels == self._groups
            and num_filters % self._num_channels == 0
            and not self._use_cudnn
            and not self._use_mkldnn
        ):
239 240 241
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
242

243 244
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
245 246 247 248
            if (
                self._num_channels == self._groups
                and self._num_channels == self._num_filters
            ):
249
                self._l_type = 'depthwise_conv2d'
250
            else:
251
                self._l_type = 'conv2d'
252

253
        self._num_channels = num_channels
254 255
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
256
        else:
257
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
258
                raise ValueError("num_channels must be divisible by groups.")
259 260
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
261
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
262 263

        def _get_default_param_initializer():
264 265 266 267
            filter_elem_num = (
                filter_size[0] * filter_size[1] * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
M
minqiyang 已提交
268 269
            return Normal(0.0, std, 0)

270
        self.weight = self.create_parameter(
271
            attr=self._param_attr,
M
minqiyang 已提交
272 273
            shape=filter_shape,
            dtype=self._dtype,
274 275
            default_initializer=_get_default_param_initializer(),
        )
M
minqiyang 已提交
276

277 278 279 280 281 282
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
M
minqiyang 已提交
283 284

    def forward(self, input):
H
hong 已提交
285
        if in_dygraph_mode() and self._l_type == "conv2d":
286 287 288 289 290 291 292 293 294 295 296 297 298
            pre_bias = _C_ops.conv2d(
                input,
                self.weight,
                self._stride,
                self._padding,
                "EXPLICIT",
                self._groups if self._groups else 1,
                self._dilation,
                "NCHW",
                False,
                -1,
                False,
            )
H
hong 已提交
299 300 301 302 303
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )

        if _non_static_mode() and (
            self._l_type == 'conv2d' or self._l_type == 'depthwise_conv2d'
        ):
            attrs = (
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups if self._groups else 1,
                'use_cudnn',
                self._use_cudnn,
                'use_mkldnn',
                self._use_mkldnn,
            )
324
            out = _legacy_C_ops.conv2d(input, self.weight, *attrs)
325 326
            pre_bias = out

327
            pre_act = dygraph_utils._append_bias_in_dygraph(
328 329
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn
            )
330
            return dygraph_utils._append_activation_in_dygraph(
331 332
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
333 334
        inputs = {
            'Input': [input],
335
            'Filter': [self.weight],
336 337 338 339 340 341 342
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
343
            'use_mkldnn': self._use_mkldnn,
344
        }
345

346 347 348
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'Conv2D'
        )
M
minqiyang 已提交
349
        pre_bias = self._helper.create_variable_for_type_inference(
350 351
            dtype=self._dtype
        )
M
minqiyang 已提交
352

353 354 355 356 357 358 359 360 361
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs=attrs,
        )
M
minqiyang 已提交
362

363
        if self.bias is not None:
364
            pre_act = self._helper.create_variable_for_type_inference(
365 366 367 368 369 370 371 372
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1, 'use_mkldnn': self._use_mkldnn},
            )
373 374
        else:
            pre_act = pre_bias
M
minqiyang 已提交
375

L
lujun 已提交
376
        # Currently, we don't support inplace in dygraph mode
377
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
378 379


L
lujun 已提交
380
class Conv3D(layers.Layer):
381
    r"""
382 383 384 385
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
386
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
387
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
388 389 390 391 392 393 394 395 396 397 398 399 400 401
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
402
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

428
    Parameters:
429
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
430
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
431
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
432
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
433 434 435
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
436
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
437 438
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
439
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
440 441
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
442
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
443
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
444
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
445 446 447
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
448 449
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
450 451 452
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
453 454
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
455 456 457
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
458 459 460 461 462
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
463
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
464

D
DuYao 已提交
465 466 467 468
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
469

470
    Returns:
D
DuYao 已提交
471
        None.
472 473 474 475 476 477 478 479

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

480 481 482 483 484 485
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
486
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
487 488
              ret = conv3d(fluid.dygraph.base.to_variable(data))

489 490
    """

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
506
        assert param_attr is not False, "param_attr should not be False here."
507 508
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
509 510 511
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
512
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
513 514
        self._act = act
        self._use_cudnn = use_cudnn
515 516 517 518
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
519
        self._dtype = dtype
520 521

        if self._groups is None:
522
            num_filter_channels = self._num_channels
L
lujun 已提交
523
        else:
524
            if self._num_channels % self._groups != 0:
L
lujun 已提交
525
                raise ValueError("num_channels must be divisible by groups.")
526
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
527

528 529
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
530 531

        def _get_default_param_initializer():
532 533 534 535 536 537 538
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
539 540
            return Normal(0.0, std, 0)

541
        self.weight = self.create_parameter(
542
            attr=self._param_attr,
L
lujun 已提交
543 544
            shape=filter_shape,
            dtype=self._dtype,
545 546
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
547

548 549 550 551 552 553
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
554 555 556

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
576

577
        if self.bias is not None:
578
            pre_act = self._helper.create_variable_for_type_inference(
579 580 581 582 583 584 585 586
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
587 588
        else:
            pre_act = pre_bias
L
lujun 已提交
589 590 591 592 593

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
594
    r"""
L
lujun 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
640 641 642 643 644 645 646 647
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

648 649
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
650 651
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
652 653 654 655 656
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
657 658
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
659

660
    Parameters:
661
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
662 663
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
664
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
665
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
666
            Otherwise, the filter will be a square.
D
DuYao 已提交
667 668 669 670 671 672 673 674 675 676
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
677 678 679
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
680 681
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
682
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
683
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
684
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
685 686 687 688
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
689 690
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
691 692
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
693 694
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
695 696 697
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
698 699 700 701 702
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
703
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
704
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
705

D
DuYao 已提交
706 707 708 709
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
710

L
lujun 已提交
711
    Returns:
D
DuYao 已提交
712
        None.
L
lujun 已提交
713 714 715 716 717 718 719 720

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

721 722 723 724 725 726
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
727
                    num_channels=3,
728 729 730 731 732
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
733 734
    """

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
750
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
751 752
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
753 754 755
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
756 757 758 759
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
760
        self._num_channels = num_channels
L
lujun 已提交
761 762 763 764 765 766
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
767
        self._dtype = dtype
L
lujun 已提交
768

769
        self._filter_size = utils.convert_to_list(
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
786 787 788

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
789 790 791 792 793 794 795 796 797 798 799 800 801 802
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
803 804 805

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
806 807 808 809 810 811 812 813
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
814 815 816 817 818 819 820
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
821
class Pool2D(layers.Layer):
822
    r"""
823

824 825 826 827 828
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
829 830
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

876
    Parameters:
877
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
878
            it must contain two integers, (pool_size_Height, pool_size_Width).
879
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
880
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
881 882
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
883
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
884
            the pool stride size will be a square of an int. Default: 1.
885
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
886
            If ``pool_padding`` is a tuple,
887
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
888 889 890 891 892 893 894
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
895 896
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
897
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
898
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
899 900

    Returns:
901
        None
902 903

    Raises:
904 905 906 907
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
908 909 910 911 912

    Examples:

        .. code-block:: python

L
lujun 已提交
913
          import paddle.fluid as fluid
914 915
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
916 917

          with fluid.dygraph.guard():
918
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
919
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
920 921 922
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
923
             pool2d_res = pool2d(to_variable(data))
924 925 926

    """

927 928 929 930 931 932 933 934 935 936 937 938
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
939 940
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
941 942 943
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
944 945
                str(pool_type),
            )
M
minqiyang 已提交
946 947 948 949

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
950 951
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
952 953 954 955

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

956
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
957

958 959 960
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
961 962
                "Attr(data_format): %s." % str(data_format)
            )
963

964
        super(Pool2D, self).__init__()
M
minqiyang 已提交
965 966 967

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
968 969 970
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
971 972 973 974 975
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
976
        self._data_format = data_format
M
minqiyang 已提交
977 978 979
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
980
        if _non_static_mode():
981
            if not self._use_mkldnn and in_dygraph_mode():
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                    self._use_cudnn,
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
1019
            return _legacy_C_ops.pool2d(input, *attrs)
1020

1021
        check_variable_and_dtype(
1022 1023 1024 1025 1026
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
1027

1028 1029 1030 1031 1032 1033 1034 1035
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
1036
            "use_mkldnn": self._use_mkldnn,
1037
            "exclusive": self._exclusive,
1038
            "data_format": self._data_format,
1039 1040 1041
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
1042 1043
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

1044 1045 1046 1047 1048 1049
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
1050
        return pool_out
M
minqiyang 已提交
1051 1052


S
songyouwei 已提交
1053 1054
class Linear(layers.Layer):
    """
1055

S
songyouwei 已提交
1056 1057 1058 1059 1060 1061 1062 1063
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

1064
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

1105 1106 1107 1108 1109 1110 1111 1112 1113
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
S
songyouwei 已提交
1114 1115 1116
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
1117 1118 1119 1120 1121 1122 1123 1124 1125
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
1126

1127
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
1128

S
songyouwei 已提交
1129
    def forward(self, input):
J
Jiabin Yang 已提交
1130
        if _non_static_mode():
1131
            pre_bias = _varbase_creator(dtype=input.dtype)
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
1145
            pre_act = dygraph_utils._append_bias_in_dygraph(
1146 1147 1148
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
1149 1150
                use_mkldnn=self._use_mkldnn,
            )
1151

1152
            return dygraph_utils._append_activation_in_dygraph(
1153 1154
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
1155

1156 1157 1158
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
1159

1160
        attrs = {
S
songyouwei 已提交
1161 1162 1163
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1164
            "use_mkldnn": self._use_mkldnn,
1165 1166
        }
        inputs = {"X": [input], "Y": [self.weight]}
1167

S
songyouwei 已提交
1168
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1169 1170 1171
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
1172
        if self.bias is not None:
S
songyouwei 已提交
1173
            pre_activation = self._helper.create_variable_for_type_inference(
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
1185 1186 1187 1188 1189
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1190
class InstanceNorm(layers.Layer):
1191
    r"""
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1222
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1223 1224
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1225
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
1226 1227
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1228
             If it is set to None or one attribute of ParamAttr, instance_norm
1229 1230
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
1231
             If it is set to False, will not create bias_attr. Default: None.
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

1247
          # x's shape is [1, 3, 1, 2]
1248 1249 1250 1251 1252
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
1253
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995]
1254 1255 1256 1257
              print(ret)

    """

1258 1259 1260 1261 1262 1263 1264 1265
    def __init__(
        self,
        num_channels,
        epsilon=1e-5,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
1266 1267
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1268
        if param_attr == False or bias_attr == False:
1269 1270
            assert (
                bias_attr == param_attr
1271
            ), "param_attr and bias_attr must be set to False at the same time in InstanceNorm"
1272 1273 1274 1275 1276
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1277 1278 1279 1280 1281 1282
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
1283 1284 1285 1286 1287 1288 1289 1290 1291
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
C
ceci3 已提交
1292 1293 1294
        else:
            self.scale = None
            self.bias = None
1295 1296

    def forward(self, input):
1297
        if in_dygraph_mode():
1298 1299 1300
            out = _C_ops.instance_norm(
                input, self.scale, self.bias, self._epsilon
            )
1301 1302
            return out
        if _in_legacy_dygraph():
1303 1304 1305
            out, _, _ = _legacy_C_ops.instance_norm(
                input, self.scale, self.bias, 'epsilon', self._epsilon
            )
1306 1307
            return out

1308 1309 1310
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "InstanceNorm"
        )
1311 1312 1313

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1314 1315 1316 1317
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1318 1319

        saved_mean = self._helper.create_variable_for_type_inference(
1320 1321
            dtype=self._dtype, stop_gradient=True
        )
1322
        saved_variance = self._helper.create_variable_for_type_inference(
1323 1324
            dtype=self._dtype, stop_gradient=True
        )
1325
        instance_norm_out = self._helper.create_variable_for_type_inference(
1326 1327
            self._dtype
        )
1328 1329 1330 1331

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
1332
            "SavedVariance": [saved_variance],
1333 1334
        }

1335 1336 1337
        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
1338 1339 1340
        return instance_norm_out


M
minqiyang 已提交
1341
class BatchNorm(layers.Layer):
1342
    r"""
1343

1344 1345
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
1346
    It implements the function of the Batch Normalization Layer and can be used
1347 1348
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1349 1350 1351 1352
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1353
    When use_global_stats = False, the :math:`\mu_{\beta}`
1354
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1355
    Calculated as follows:
1356 1357 1358

    ..  math::

1359 1360 1361 1362
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1363

1364 1365
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1366 1367 1368

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1369 1370 1371 1372 1373 1374
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1375

1376
    The normalization function formula is as follows:
1377

1378 1379
    ..  math::

1380 1381 1382 1383
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1384

1385 1386 1387
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1388

1389
    Parameters:
1390
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1391
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1392 1393 1394
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1395 1396 1397
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1398 1399 1400
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1401
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1402 1403 1404
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1405 1406 1407 1408 1409 1410
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1411 1412
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1413
        use_global_stats(bool, optional): Whether to use global mean and
1414 1415 1416
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1417 1418 1419 1420
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1421 1422

    Returns:
1423
        None
1424 1425 1426

    Examples:
        .. code-block:: python
L
lujun 已提交
1427 1428

          import paddle.fluid as fluid
1429 1430
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1431

1432
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1433
          with fluid.dygraph.guard():
1434
              x = to_variable(x)
1435
              batch_norm = fluid.BatchNorm(10)
1436
              hidden1 = batch_norm(x)
1437 1438
    """

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
1457
        super(BatchNorm, self).__init__()
1458
        self._param_attr = param_attr
1459
        self._bias_attr = bias_attr
1460
        self._act = act
1461
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1462

1463 1464 1465
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1466

1467 1468
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1469 1470 1471 1472 1473 1474
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1505
        self._mean.stop_gradient = True
M
minqiyang 已提交
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1517
        self._variance.stop_gradient = True
M
minqiyang 已提交
1518 1519

        self._in_place = in_place
1520
        self._data_layout = data_layout
M
minqiyang 已提交
1521 1522 1523
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1524
        self._fuse_with_relu = False
M
minqiyang 已提交
1525
        self._use_global_stats = use_global_stats
1526
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1527 1528 1529 1530 1531 1532 1533

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1534

J
Jiabin Yang 已提交
1535
        if _non_static_mode():
H
hong 已提交
1536
            if in_dygraph_mode():
1537
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    not self.training,
                    self._use_global_stats,
                    self._trainable_statistics,
                    False,
                )
1551
                return dygraph_utils._append_activation_in_dygraph(
1552 1553
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1554 1555

            elif _in_legacy_dygraph():
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1574
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1585

1586
            return dygraph_utils._append_activation_in_dygraph(
1587 1588
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1589

1590 1591 1592
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1593

1594 1595 1596 1597 1598 1599 1600
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1601 1602
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1603
        }
M
minqiyang 已提交
1604

1605 1606 1607 1608 1609
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1610
            "Variance": [self._variance],
1611 1612
        }

1613
        saved_mean = self._helper.create_variable_for_type_inference(
1614 1615
            dtype=self._dtype, stop_gradient=True
        )
1616
        saved_variance = self._helper.create_variable_for_type_inference(
1617 1618
            dtype=self._dtype, stop_gradient=True
        )
1619
        reserve_space = self._helper.create_variable_for_type_inference(
1620 1621
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1622

1623 1624 1625 1626 1627
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1628 1629 1630 1631 1632 1633

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1634
            "SavedVariance": [saved_variance],
1635
        }
1636
        if reserve_space is not None:
1637
            outputs["ReserveSpace"] = [reserve_space]
1638

1639 1640 1641
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1642

L
lujun 已提交
1643
        # Currently, we don't support inplace in dygraph mode
1644
        return self._helper.append_activation(batch_norm_out, self._act)
1645 1646


1647 1648
class Dropout(layers.Layer):
    """
1649 1650
    This interface is used to construct a callable object of the ``Dropout`` class.
    For more details, refer to code examples.
1651

1652 1653 1654 1655 1656
    Drop or keep each element of input independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly sets (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.
1657

1658
    Dropout layer can be removed for efficiency concern.
1659

1660 1661 1662 1663 1664 1665 1666
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        seed (int, optional): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training. Default: None.
        dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']
1667

1668
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
1669

1670 1671
                                           - train: out = input * mask
                                           - inference: out = input * (1.0 - p)
1672

1673 1674 1675
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
1676

1677 1678
                                           - train: out = input * mask / ( 1.0 - p )
                                           - inference: out = input
1679

1680 1681 1682 1683 1684
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is p)
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                    This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                    Default: False.
1685

1686 1687
    Returns:
        None
1688

1689
    Examples:
1690

1691
        .. code-block:: python
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            import paddle.fluid as fluid
            from paddle.fluid.dygraph.base import to_variable
            import numpy as np

            x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
            with fluid.dygraph.guard():
                x = to_variable(x)
                m = fluid.dygraph.Dropout(p=0.5)
                droped_train = m(x)
                # switch to eval mode
                m.eval()
                droped_eval = m(x)
    """

    def __init__(
        self,
        p=0.5,
        seed=None,
        dropout_implementation="downgrade_in_infer",
        is_test=False,
    ):
1714 1715 1716 1717 1718
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
1719 1720
            seed, int
        ), "seed argument should be None or a integer"
1721 1722
        self._seed = seed
        assert dropout_implementation in (
1723 1724
            'downgrade_in_infer',
            'upscale_in_train',
1725 1726 1727 1728 1729
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1730 1731 1732
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1733 1734 1735 1736 1737
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1738 1739 1740
            'is_test': not self.training
            if _non_static_mode()
            else self._is_test,
1741 1742 1743 1744 1745
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1746
        if _non_static_mode():
1747
            attrs = sum(attrs.items(), ())
1748
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1749 1750 1751 1752
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
1753 1754 1755 1756 1757 1758 1759 1760 1761
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1762 1763 1764
        return out


1765
class Embedding(layers.Layer):
1766
    r"""
1767
    :alias_main: paddle.nn.Embedding
1768 1769
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1770

1771 1772
    **Embedding Layer**

Z
zhongpu 已提交
1773 1774 1775 1776 1777 1778
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1779 1780
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1781

1782
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1783 1784 1785 1786 1787 1788 1789
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1790 1791
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1792 1793 1794 1795 1796 1797 1798 1799
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1800

Z
zhongpu 已提交
1801 1802 1803 1804
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1805

1806
    Parameters:
L
lujun 已提交
1807 1808
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1809
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1810
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1811
            True because sparse update is faster. But some optimizer does not support sparse update,
1812
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1813 1814 1815 1816 1817
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1818
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1819 1820 1821 1822 1823 1824
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1825
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1826
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1827
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1828 1829 1830
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1831

Z
zhongpu 已提交
1832 1833
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1834

1835
    Returns:
Z
zhongpu 已提交
1836
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1837 1838

    Examples:
1839

1840 1841
        .. code-block:: python

L
lujun 已提交
1842 1843 1844 1845
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1846
          # example 1
1847 1848
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1849 1850
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1851
              emb = fluid.dygraph.Embedding(
1852 1853 1854
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1855
              static_rlt3 = emb(base.to_variable(inp_word))
1856
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1870
              static_rlt3 = emb(base.to_variable(inp_word))
1871 1872
    """

1873 1874 1875 1876 1877 1878 1879 1880 1881
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1882
        super(Embedding, self).__init__()
1883 1884 1885
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1886 1887 1888 1889 1890 1891 1892
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1893 1894 1895

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1896
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1897 1898 1899
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1900 1901 1902 1903 1904 1905
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1906 1907

    def forward(self, input):
J
Jiabin Yang 已提交
1908
        if _non_static_mode():
1909
            return _legacy_C_ops.lookup_table_v2(
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1921

1922 1923 1924 1925 1926 1927
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1928 1929 1930 1931
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1932
            'padding_idx': self._padding_idx,
1933
        }
1934

1935
        out = self._helper.create_variable_for_type_inference(self._dtype)
1936 1937 1938 1939 1940 1941
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1942 1943

        return out
M
minqiyang 已提交
1944 1945


1946
class LayerNorm(layers.Layer):
1947
    r"""
1948
    :alias_main: paddle.nn.LayerNorm
1949 1950
        :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
        :old_api: paddle.fluid.dygraph.LayerNorm
1951

1952 1953 1954
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1955
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1956

1957
    The formula is as follows:
1958

1959
    ..  math::
1960

1961
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1962

1963
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1964

1965
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1966

1967 1968 1969 1970 1971
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1972

1973
    Parameters:
1974 1975 1976 1977
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1978
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1979
            normalization. Default: True.
1980
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1981
            normalization. Default: True.
1982
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1983
            division by zero. Default: 1e-05.
1984
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1985 1986 1987
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1988
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1989
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1990 1991 1992
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1993
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1994
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1995
                  Default: None.
1996 1997
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1998
    Returns:
1999
        None
2000

2001
    Examples:
2002

2003 2004 2005
        .. code-block:: python

          import paddle.fluid as fluid
2006
          from paddle.fluid.dygraph.base import to_variable
2007 2008
          import numpy

2009
          x = numpy.random.random((3, 32, 32)).astype('float32')
2010
          with fluid.dygraph.guard():
2011
              x = to_variable(x)
2012
              layerNorm = fluid.LayerNorm([32, 32])
2013
              ret = layerNorm(x)
2014

2015
    """
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    def __init__(
        self,
        normalized_shape,
        scale=True,
        shift=True,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype='float32',
    ):
2028 2029 2030
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
2031

2032
        self._normalized_shape = list(normalized_shape)
2033 2034 2035 2036 2037 2038
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
2039 2040
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
2041
        if self._scale:
2042
            self.weight = self.create_parameter(
2043 2044 2045
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
2046 2047
                default_initializer=Constant(1.0),
            )
2048 2049
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
2050
                logging.warn("param_attr are only available with scale is True")
2051
            self.weight = None
2052

2053 2054
        if self._shift:
            assert self._bias_attr is not False
2055 2056 2057 2058 2059 2060
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
2061 2062
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
2063
                logging.warn("bias_attr are only available with shift is True")
2064
            self.bias = None
2065 2066

    def forward(self, input):
2067 2068 2069 2070
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
2071 2072 2073 2074
        if (
            input_ndim < normalized_ndim
            or input_shape[self._begin_norm_axis :] != self._normalized_shape
        ):
2075
            str_normalized_shape = str(self._normalized_shape)
2076 2077 2078 2079 2080 2081 2082 2083
            raise ValueError(
                'Given normalized_shape is '
                + str_normalized_shape
                + ', expected input with shape [*, '
                + str_normalized_shape[1:]
                + ', but got input shape '
                + str(input_shape)
            )
2084

J
Jiabin Yang 已提交
2085
        if _non_static_mode():
H
hong 已提交
2086
            if in_dygraph_mode():
2087 2088 2089 2090 2091 2092 2093 2094
                pre_act, _, _, = _C_ops.layer_norm(
                    input,
                    self.weight,
                    self.bias,
                    self._epsilon,
                    self._begin_norm_axis,
                    False,
                )
H
hong 已提交
2095
                return dygraph_utils._append_activation_in_dygraph(
2096 2097
                    pre_act, act=self._act
                )
H
hong 已提交
2098
            else:
2099
                pre_act, _, _ = _legacy_C_ops.layer_norm(
2100 2101 2102 2103 2104 2105 2106 2107
                    input,
                    self.weight,
                    self.bias,
                    'epsilon',
                    self._epsilon,
                    'begin_norm_axis',
                    self._begin_norm_axis,
                )
H
hong 已提交
2108
                return dygraph_utils._append_activation_in_dygraph(
2109 2110
                    pre_act, act=self._act
                )
2111

2112 2113 2114
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'LayerNorm'
        )
2115

2116
        inputs = dict()
2117
        inputs['X'] = [input]
2118
        if self._scale:
2119
            inputs['Scale'] = [self.weight]
2120
        if self._shift:
2121 2122 2123
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
2124
            "begin_norm_axis": self._begin_norm_axis,
2125 2126
        }

2127 2128
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
2129 2130
            dtype=self._dtype, stop_gradient=True
        )
2131
        variance_out = self._helper.create_variable_for_type_inference(
2132 2133
            dtype=self._dtype, stop_gradient=True
        )
2134
        layer_norm_out = self._helper.create_variable_for_type_inference(
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
            self._dtype
        )

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis,
            },
        )
2151

2152
        return self._helper.append_activation(layer_norm_out, act=self._act)
2153 2154


M
minqiyang 已提交
2155 2156 2157
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
2158

D
DuYao 已提交
2159 2160
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
2161
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
2162
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
2173
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

2199
    Parameters:
L
lujun 已提交
2200
        size (int): The input dimension value.
D
DuYao 已提交
2201
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
2202 2203
            hidden-hidden weight matrix.

D
DuYao 已提交
2204
            **Note**:
2205

D
DuYao 已提交
2206
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
2207 2208
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
2209
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
2210 2211 2212 2213


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
2214
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
2215 2216 2217
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
2218 2219 2220 2221 2222
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
2223
            is initialized zero. The default value is None.
L
lujun 已提交
2224
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
2225
                             The default value is 'tanh'.
L
lujun 已提交
2226
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
2227 2228 2229
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
2230

D
DuYao 已提交
2231 2232 2233 2234
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2235

M
minqiyang 已提交
2236
    Returns:
D
DuYao 已提交
2237 2238
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
2239
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
2240
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
2254
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
2255 2256 2257
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
2258
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
2259 2260 2261
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
2262 2263
    """

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    def __init__(
        self,
        size,
        param_attr=None,
        bias_attr=None,
        activation='tanh',
        gate_activation='sigmoid',
        origin_mode=False,
        dtype='float32',
    ):
2274
        super(GRUUnit, self).__init__()
2275
        self._bias_attr = bias_attr
M
minqiyang 已提交
2276 2277 2278 2279
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2280 2281
            relu=3,
        )
H
Hongyu Liu 已提交
2282 2283
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2284

M
minqiyang 已提交
2285
        self._dtype = dtype
M
minqiyang 已提交
2286 2287
        size = size // 3
        # create weight
2288 2289 2290
        self.weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype
        )
M
minqiyang 已提交
2291 2292

        # create bias
M
minqiyang 已提交
2293
        bias_size = [1, 3 * size]
2294
        self._bias_size = bias_size
2295 2296 2297
        self.bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
M
minqiyang 已提交
2298

M
minqiyang 已提交
2299
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2300
        if _non_static_mode():
2301
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
2302 2303 2304 2305 2306 2307 2308 2309 2310
                input,
                hidden,
                self.weight,
                self.bias,
                'activation',
                self.activation,
                'gate_activation',
                self.gate_activation,
            )
2311 2312
            return updated_hidden, reset_hidden_pre, gate

2313 2314 2315 2316 2317 2318
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'GRUUnit'
        )
        check_variable_and_dtype(
            hidden, 'hidden', ['float32', 'float64'], 'GRUUnit'
        )
2319 2320 2321
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
2322
            'Weight': [self.weight],
2323
        }
2324
        if self.bias is not None:
2325
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2326 2327
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
2328 2329
            self._dtype
        )
M
minqiyang 已提交
2330
        updated_hidden = self._helper.create_variable_for_type_inference(
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
            self._dtype
        )
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': self.activation,
                'gate_activation': self.gate_activation,
            },
        )
M
minqiyang 已提交
2346 2347

        return updated_hidden, reset_hidden_pre, gate
2348 2349 2350 2351


class NCE(layers.Layer):
    """
2352 2353 2354 2355 2356
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2357
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2358

2359
    Parameters:
2360 2361
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2362
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2363 2364 2365
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2366
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2367 2368 2369 2370
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2371
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2372
        sampler (str, optional): The sampler used to sample class from negative classes.
2373 2374
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2375
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2376
                       It is used when sampler is set to 'custom_dist'.
2377
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2378
                       Default: None.
2379 2380
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2381
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2382

2383 2384
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2385

2386
        **bias** (Parameter or None): the learnable bias of this layer.
2387

2388
    Returns:
2389
        None
2390 2391 2392 2393

    Examples:
        .. code-block:: python

2394 2395 2396
            import numpy as np
            import paddle.fluid as fluid

2397
            window_size = 5
2398 2399
            dict_size = 20
            label_word = int(window_size // 2) + 1
2400
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2422
                nce = fluid.NCE(
2423
                             num_total_classes=dict_size,
2424
                             dim=embs3.shape[1],
2425 2426 2427 2428 2429 2430 2431
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2432 2433
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2434 2435 2436

    """

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    def __init__(
        self,
        num_total_classes,
        dim,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None,
        sampler="uniform",
        custom_dist=None,
        seed=0,
        is_sparse=False,
        dtype='float32',
    ):
2451
        super(NCE, self).__init__()
2452 2453 2454
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2455
        self._dtype = dtype
2456
        self._inputs = dict()
2457 2458 2459
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
2515 2516
                    default_initializer=NumpyArrayInitializer(numpy_array),
                )
2517 2518 2519 2520
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
2521 2522
                np.array(custom_dist).astype('float32')
            )
2523
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
2524 2525
                np.array(alias_).astype('int32')
            )
2526
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
2527 2528
                np.array(alias_probs_).astype('float32')
            )
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
2548
            'remote_prefetch': remote_prefetch,
2549 2550
        }

2551
        self.weight = self.create_parameter(
2552 2553 2554
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2555 2556
            dtype=self._dtype,
        )
2557
        if self._bias_attr:
2558
            self.bias = self.create_parameter(
2559 2560 2561
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2562 2563
                dtype=self._dtype,
            )
2564 2565
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2566

2567
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2568
        if _non_static_mode():
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
            attrs = (
                'num_total_classes',
                self._attrs['num_total_classes'],
                'num_neg_samples',
                self._attrs['num_neg_samples'],
                'seed',
                self._attrs['seed'],
                'sampler',
                self._attrs['sampler'],
                'is_sparse',
                self._attrs['is_sparse'],
                'remote_prefetch',
                self._attrs['remote_prefetch'],
            )
            cost, _, _ = _legacy_C_ops.nce(
                input,
                label,
                self.weight,
                self.bias,
                self._inputs['SampleWeight'],
                self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'],
                *attrs
            )
W
Weilong Wu 已提交
2594 2595
            return cost / (self._num_neg_samples + 1)

2596 2597
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
2598 2599 2600
        check_type(
            sample_weight, 'sample_weight', (Variable, type(None)), 'NCE'
        )
2601 2602 2603 2604 2605
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
2606 2607 2608
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2609 2610

        cost = self._helper.create_variable_for_type_inference(
2611 2612
            dtype=input.dtype
        )
2613
        sample_logits = self._helper.create_variable_for_type_inference(
2614 2615
            dtype=input.dtype
        )
2616
        sample_labels = self._helper.create_variable_for_type_inference(
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
            dtype=label.dtype
        )

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels,
            },
            attrs=self._attrs,
        )
2630 2631 2632 2633
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2634
    r"""
2635 2636 2637 2638
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2639 2640 2641 2642 2643
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2644
    Parameters:
L
lujun 已提交
2645
        mode (str): The mode for weight sharing. It supports all, channel
2646 2647 2648
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2649 2650 2651
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2652
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2653 2654
          This argument is required when mode is "element".
          Default: None.
2655 2656
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2657
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2658

2659 2660
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2661

2662
    Returns:
2663
        None
2664 2665 2666 2667 2668

    Examples:

        .. code-block:: python

L
lujun 已提交
2669
          import paddle.fluid as fluid
2670
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2671 2672 2673 2674
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2675
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2687
                 input_shape=inp_np.shape,
L
lujun 已提交
2688
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2689
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2690

2691 2692
    """

2693 2694 2695 2696 2697 2698 2699 2700
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
2701 2702
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2703 2704
        self._mode = mode
        self._param_attr = param_attr
2705
        self._dtype = dtype
S
songyouwei 已提交
2706 2707 2708 2709
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
2710 2711 2712
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2713
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2714
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2715
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
2716
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2717
        elif mode == 'element':
2718
            assert isinstance(
2719 2720
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2721 2722 2723
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2724 2725 2726 2727 2728 2729 2730
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
2731 2732

    def forward(self, input):
2733 2734 2735
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2736
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2737
        out = self._helper.create_variable_for_type_inference(self._dtype)
2738 2739 2740 2741 2742 2743
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
2744 2745 2746 2747
        return out


class BilinearTensorProduct(layers.Layer):
2748
    r"""
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2763
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2764

2765
    Parameters:
2766 2767 2768 2769 2770
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2771
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
2772
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
2773 2774
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2775
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2776
           If it is set to None, the bias is initialized zero. The default value is None.
2777
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2778

D
DuYao 已提交
2779 2780 2781 2782
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2783

2784
    Returns:
W
wanghuancoder 已提交
2785
       Tensor: A 2-D Tensor of shape [batch_size, size].
2786 2787 2788 2789

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2799

2800 2801
    """

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
2813
        super(BilinearTensorProduct, self).__init__()
2814 2815 2816 2817
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2818 2819 2820
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2821
        self._inputs = dict()
2822
        self._dtype = dtype
2823

2824
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2825 2826 2827 2828 2829 2830
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
2831
        bias_size = [1, self._output_dim]
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
2844
    def forward(self, x, y):
2845 2846 2847 2848 2849 2850
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
2851
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2852
        if self.bias is not None:
2853
            self._inputs["Bias"] = self.bias
2854
        if self._name is not None:
2855 2856 2857 2858 2859
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
2860
        else:
2861 2862 2863 2864 2865 2866 2867 2868
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
2869 2870

        # add activation
2871
        return self._helper.append_activation(out, act=self._act)
2872 2873 2874


class Conv2DTranspose(layers.Layer):
2875
    r"""
2876 2877
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2878
    The convolution2D transpose layer calculates the output based on the input,
2879 2880 2881
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2882 2883
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2884 2885
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2886 2887 2888
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2889 2890
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2891 2892 2893 2894 2895 2896 2897 2898 2899

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2900 2901
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2902
    * :math:`\\ast`: Convolution operation.
2903
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2928
    Parameters:
2929
        num_channels(int): The number of channels in the input image.
2930
        num_filters(int): The number of the filter. It is as same as the output
2931
            feature map.
2932 2933 2934
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2935
        output_size(int or tuple, optional): The output image size. If output size is a
2936 2937 2938
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2939
            should follow the formula above. Default: None.
2940
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2941
            contain two integers, (padding_H, padding_W). Otherwise, the
2942 2943
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2944
            contain two integers, (stride_H, stride_W). Otherwise, the
2945 2946
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2947
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2948
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2949
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2950 2951 2952 2953
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2954 2955
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2956 2957 2958
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2959
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2960 2961 2962 2963
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2964
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2965
            library is installed. Default: True.
2966
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2967
            Default: None.
2968
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2969

2970 2971
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2972

2973
        **bias** (Parameter or None): the learnable bias of this layer.
2974

2975 2976
    Returns:
        None
2977 2978 2979 2980

    Examples:
       .. code-block:: python

2981
          import paddle.fluid as fluid
2982
          import numpy as np
2983 2984

          with fluid.dygraph.guard():
2985
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2986
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2987
                    num_channels=32, num_filters=2, filter_size=3)
2988 2989
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2990 2991
    """

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
3008
        super(Conv2DTranspose, self).__init__()
3009 3010 3011
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
3012 3013
        self._param_attr = param_attr
        self._bias_attr = bias_attr
3014
        self._act = act
3015
        self._groups = groups
3016
        self._num_channels = num_channels
3017 3018 3019 3020 3021 3022 3023
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
3024
        self._dtype = dtype
3025

3026 3027 3028 3029 3030
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
3031
            self._op_type = 'depthwise_conv2d_transpose'
3032 3033
        else:
            self._op_type = 'conv2d_transpose'
3034 3035 3036 3037 3038

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

3039
        self._filter_size = utils.convert_to_list(
3040 3041
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
3042 3043 3044

        if self._output_size is None:
            self._output_size = []
3045 3046 3047
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
3048 3049
                    self._output_size
                )
3050 3051
            else:
                self._output_size = utils.convert_to_list(
3052 3053
                    self._output_size, 2, 'output_size'
                )
3054
        elif isinstance(self._output_size, int):
3055 3056 3057
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
3058
        elif isinstance(self._output_size, Variable):
3059 3060 3061 3062 3063 3064
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
3065
            if len(self._output_size.shape) == 1 and (
3066 3067 3068
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
3069 3070 3071 3072
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
3073 3074
                    "output_size must contain one or two integers."
                )
3075
        else:
3076
            raise ValueError("output_size should be list or int or Tensor")
3077 3078
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
3079 3080 3081 3082
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
3083

3084 3085 3086
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
3087

3088 3089 3090 3091 3092 3093
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
3094

3095
    def forward(self, input):
J
Jiabin Yang 已提交
3096
        if _non_static_mode():
3097
            op = getattr(_legacy_C_ops, self._op_type)
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
3114
            pre_bias = out
3115
            pre_act = dygraph_utils._append_bias_in_dygraph(
3116 3117 3118 3119 3120
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
3121

3122 3123 3124
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
3125

3126 3127 3128 3129 3130 3131 3132
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
3133
            'use_cudnn': self._use_cudnn,
3134 3135
        }

3136
        pre_bias = self._helper.create_variable_for_type_inference(
3137 3138 3139 3140 3141 3142 3143 3144
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
3145

3146
        if self.bias is not None:
3147
            pre_act = self._helper.create_variable_for_type_inference(
3148 3149 3150 3151 3152 3153 3154 3155
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
3156 3157 3158 3159
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
3160 3161 3162 3163 3164 3165 3166 3167 3168
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

3169
    Parameters:
L
lujun 已提交
3170
        name_scope(str): The name of this class.
3171
        num_filters (int): number of filters.
L
lujun 已提交
3172 3173 3174
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

3187 3188 3189 3190
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

3191 3192 3193 3194
    Returns:
        Variable: output of sequence_conv
    """

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
3208
        ), "SequenceConv is not supported by dynamic graph mode yet!"
3209 3210 3211 3212 3213 3214 3215
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3216
        self._act = act
3217

3218
    def _build_once(self, input):
3219 3220
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
3221 3222 3223
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
3224

3225 3226 3227 3228 3229 3230
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
3231

3232 3233
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
3247

3248
        if self.bias is not None:
3249
            pre_act = self._helper.create_variable_for_type_inference(
3250 3251 3252 3253 3254 3255 3256 3257
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
3258 3259 3260 3261
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
3262 3263 3264


class RowConv(layers.Layer):
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

3283
    Parameters:
L
lujun 已提交
3284
        name_scope(str): The name of this class.
3285 3286 3287
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
3288 3289
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
3290

3291 3292 3293
    Attributes:
        weight (Parameter): the learnable weights of this layer.

3294
    Returns:
L
lujun 已提交
3295 3296
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

3312 3313 3314 3315 3316
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
3317
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
3318 3319 3320 3321 3322
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

3323
    def _build_once(self, input):
L
lujun 已提交
3324 3325
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
3326 3327 3328 3329 3330 3331
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3332 3333 3334

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
3335 3336 3337 3338 3339
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
3340 3341 3342 3343 3344
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
3345
    :alias_main: paddle.nn.GroupNorm
3346 3347
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
3348

3349 3350 3351 3352 3353 3354
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
3355
        channels(int): The number of channels of input.
3356 3357 3358 3359 3360 3361 3362 3363 3364
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
3365
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
3379
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
3380
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
3381 3382 3383

    """

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
3395
        super(GroupNorm, self).__init__()
L
lujun 已提交
3396 3397 3398
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3399
        self._channels = channels
L
lujun 已提交
3400 3401
        self._groups = groups
        self._act = act
3402
        self._dtype = dtype
L
lujun 已提交
3403 3404 3405
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3406
        param_shape = [self._channels]
L
lujun 已提交
3407

3408 3409 3410 3411 3412 3413
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
3414

3415 3416 3417 3418 3419 3420
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
3421 3422

    def forward(self, input):
3423
        mean_out = self._helper.create_variable_for_type_inference(
3424 3425
            dtype=self._dtype, stop_gradient=True
        )
3426
        variance_out = self._helper.create_variable_for_type_inference(
3427 3428
            dtype=self._dtype, stop_gradient=True
        )
3429
        if in_dygraph_mode():
3430 3431 3432 3433 3434 3435 3436 3437
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
3438

3439 3440 3441
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3442
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3443 3444 3445
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
3446 3447

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
3470 3471

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3472 3473 3474


class SpectralNorm(layers.Layer):
3475
    r"""
3476 3477
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3488
    :attr:`power_iters` should be a positive integer, do following
3489 3490 3491 3492
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3493
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3494

3495
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3496 3497 3498 3499 3500 3501 3502 3503

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3504
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3505 3506 3507 3508


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3509
    Parameters:
3510
        weight_shape(list or tuple): The shape of weight parameter.
3511 3512 3513 3514
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3515
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3516 3517

    Returns:
3518
        None
3519 3520 3521 3522

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3523 3524
            import paddle
            x = paddle.rand((2,8,32,32))
3525

C
Chen Long 已提交
3526 3527 3528 3529
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3530 3531 3532

    """

3533 3534 3535
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
3536
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3537 3538 3539
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3540
        self._dtype = dtype
L
lujun 已提交
3541

3542
        self._weight_shape = list(weight_shape)
3543 3544 3545 3546 3547
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
3548
            "length of `weight_shape`, but received dim="
3549 3550
            "{}".format(dim)
        )
3551 3552
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3553

3554 3555 3556 3557 3558 3559
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3560
        self.weight_u.stop_gradient = True
L
lujun 已提交
3561

3562 3563 3564 3565 3566 3567
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3568
        self.weight_v.stop_gradient = True
L
lujun 已提交
3569 3570

    def forward(self, weight):
3571
        if in_dygraph_mode():
3572 3573 3574 3575 3576 3577 3578 3579
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
3580

3581 3582 3583
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
3584
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3585
        out = self._helper.create_variable_for_type_inference(self._dtype)
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
3598 3599 3600 3601 3602

        return out


class TreeConv(layers.Layer):
3603
    """
3604 3605 3606 3607 3608 3609 3610 3611
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
3612

3613
    Parameters:
3614
        feature_size(int): last dimension of nodes_vector.
3615 3616 3617 3618 3619 3620 3621
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3622
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3623

3624 3625
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3626

3627
        **bias** (Parameter or None): the learnable bias of this layer.
3628

3629 3630
    Returns:
        None
L
lujun 已提交
3631

3632
    Examples:
L
lujun 已提交
3633

3634
        .. code-block:: python
3635

3636 3637
          import paddle.fluid as fluid
          import numpy
3638

3639 3640 3641 3642
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3643
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3644
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3645 3646
    """

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
3659
        super(TreeConv, self).__init__()
L
lujun 已提交
3660
        self._name = name
3661
        self._feature_size = feature_size
L
lujun 已提交
3662 3663 3664 3665 3666 3667
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3668 3669
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3670
        if self._bias_attr:
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3683 3684

    def forward(self, nodes_vector, edge_set):
3685 3686
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3687
        if self._name:
3688 3689 3690
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
3691 3692
        else:
            out = self._helper.create_variable_for_type_inference(
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
3707 3708
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
3709 3710 3711 3712 3713 3714 3715 3716
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
3717 3718 3719
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
3731

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3743
          inp_np = paddle.to_tensor(inp_np)
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3755 3756 3757
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
3758
        return out