operator.cc 39.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
C
chengduoZH 已提交
35 36 37
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
38
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
39

Q
Qiao Longfei 已提交
40 41 42
namespace paddle {
namespace framework {

43 44 45 46 47 48
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
49

Q
qiaolongfei 已提交
50 51
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
52
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
53
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
54
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
55 56 57 58 59
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

60 61
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
62
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
63 64
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
65 66
  }

M
minqiyang 已提交
67 68
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
69 70 71
    if (UNLIKELY(!tensor.IsInitialized())) {
      return DDim({-1});
    }
M
minqiyang 已提交
72 73 74 75 76 77 78
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
79 80 81 82 83
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
84 85 86 87 88 89
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
90 91 92 93 94
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
95

M
minqiyang 已提交
96 97 98
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
99 100
      return "";
    }
Y
Yu Yang 已提交
101
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
102
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
103 104 105 106
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
107
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
108
    }
D
dzhwinter 已提交
109 110 111 112 113
  } else {
    return "";
  }
}

114 115 116 117 118 119
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
120 121
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
122 123 124 125 126
  }

  return -1;
}

127
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
128 129 130 131 132 133 134
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
135 136
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
137 138 139
    if (UNLIKELY(!tensor.IsInitialized())) {
      return default_lod;
    }
M
minqiyang 已提交
140
    return tensor.lod();
Q
Qiao Longfei 已提交
141 142 143 144 145
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
146 147 148 149 150
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
151
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
152 153 154 155 156 157
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
158
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
159 160 161 162 163 164
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

165
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
166 167 168
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
169
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
170
      PADDLE_THROW("Cannot run operator on place %s", place);
171
#else
P
peizhilin 已提交
172 173
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
174
#endif
P
peizhilin 已提交
175
    }
P
peizhilin 已提交
176

P
peizhilin 已提交
177 178 179 180 181
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
182
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
183 184 185 186 187 188
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
189
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
190
    throw std::move(exception);
P
peizhilin 已提交
191 192
  } catch (...) {
    std::rethrow_exception(std::current_exception());
193
  }
194 195
}

196
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
197
  return inputs_.find(name) != inputs_.end();
198 199
}

200
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
201
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
202
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
203 204
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
205
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
206 207
}

Y
Yu Yang 已提交
208 209
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
210
  auto it = inputs_.find(name);
211 212
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
213
  return it->second;
Y
Yan Chunwei 已提交
214 215
}

216
bool OperatorBase::HasOutputs(const std::string& name) const {
217
  if (outputs_.find(name) != outputs_.end()) {
218 219 220 221 222 223
    return true;
  } else {
    return false;
  }
}

224
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
225
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
226
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
227 228
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
229
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
230 231
}

Y
Yu Yang 已提交
232 233
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
234
  auto it = outputs_.find(name);
235 236
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
237
  return it->second;
Y
Yan Chunwei 已提交
238 239
}

240
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
241
  std::stringstream ss;
Y
Yu Yang 已提交
242
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
243 244
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
245 246
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
247 248
      auto var_name = input.second[i];
      ss << var_name;
249
      if (scope) {
Q
Qiao Longfei 已提交
250 251 252 253 254 255 256 257 258
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
259 260
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
261
        }
262
      }
Y
Yu Yang 已提交
263 264 265
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
266
    }
Y
Yu Yang 已提交
267
    ss << "]";
Y
Yu Yang 已提交
268 269
    ++it;
    if (it != inputs_.end()) {
270 271
      ss << ", ";
    }
Q
Qiao Longfei 已提交
272
  }
Y
Yu Yang 已提交
273
  ss << "}, outputs:{";
Y
Yu Yang 已提交
274 275
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
276 277
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
278 279
      auto var_name = output.second[i];
      ss << var_name;
280
      if (scope) {
Q
Qiao Longfei 已提交
281 282 283 284 285 286 287
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
288 289
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
290 291
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
292
        }
293
      }
Y
Yu Yang 已提交
294 295 296
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
297
    }
Y
Yu Yang 已提交
298
    ss << "]";
Y
Yu Yang 已提交
299 300
    ++it;
    if (it != outputs_.end()) {
301 302
      ss << ", ";
    }
Q
Qiao Longfei 已提交
303
  }
Y
Yu Yang 已提交
304
  ss << "}.";
Q
Qiao Longfei 已提交
305 306 307
  return ss.str();
}

Y
Yu Yang 已提交
308
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
309 310
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
311
                           const AttributeMap& attrs)
S
sneaxiy 已提交
312 313 314 315 316 317
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
318 319
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
320
}
321

Q
qijun 已提交
322 323
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
324
  for (auto& o : inputs_) {
Q
qijun 已提交
325 326 327 328 329 330
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
331 332 333 334 335 336 337 338 339 340
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
341
  auto& info = Info();
Y
Yu Yang 已提交
342 343

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
344
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
354 355
}

356
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
357
  if (info_ == nullptr || info_->proto_ == nullptr) return;
358

S
sneaxiy 已提交
359
  for (auto& in : info_->Proto().inputs()) {
360 361 362 363
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
364 365
  }

S
sneaxiy 已提交
366
  for (auto& out : info_->Proto().outputs()) {
367 368 369 370 371
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
388
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
389
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
390 391
}

C
chengduo 已提交
392
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
393 394 395 396
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
397
  } else {
Y
Yang Yang 已提交
398
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
399
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
400 401 402
  }
}

C
chengduo 已提交
403
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
404
  if (var->IsType<LoDTensor>()) {
405
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
406
  } else if (var->IsType<SelectedRows>()) {
407
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
408
  } else {
Y
Yang Yang 已提交
409
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
410
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
411 412 413
  }
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
446 447 448 449 450 451 452 453 454 455
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
456
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
457 458 459 460 461 462 463 464 465
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

466
template <>
467
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
468
  return Input<LoDTensor>(name);
469 470 471
}

template <>
472
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
473
    const std::string& name) const {
X
Xin Pan 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
487
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
488 489 490 491 492
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

493
template <>
494
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
495
  return Output<LoDTensor>(name);
496 497 498
}

template <>
499
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
500
    const std::string& name) const {
501 502 503 504 505
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
506
  std::vector<Tensor*> res;
507 508 509 510 511
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
512
                 });
513 514 515
  return res;
}

Y
Yu Yang 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

531 532
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
533 534
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
535
      : op_(op), ctx_(ctx) {}
536 537

  bool HasInput(const std::string& name) const override {
538
    // has only one input
X
Xin Pan 已提交
539
    const auto& ins = ctx_.inputs;
540 541
    auto it = ins.find(name);
    if (it == ins.end()) {
542 543
      return false;
    }
544
    const auto& in = it->second;
X
Xin Pan 已提交
545
    if (in.size() == 0) return false;
T
tensor-tang 已提交
546
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
547
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
548
    return in[0] != nullptr;
549 550 551
  }

  bool HasOutput(const std::string& name) const override {
552
    // has only one output
X
Xin Pan 已提交
553
    const auto& outs = ctx_.outputs;
554 555
    auto it = outs.find(name);
    if (it == outs.end()) {
556 557
      return false;
    }
558
    const auto& out = it->second;
X
Xin Pan 已提交
559
    if (out.size() == 0) {
560 561
      return false;
    }
T
tensor-tang 已提交
562 563
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
564
    return out[0] != nullptr;
565 566 567
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
568 569
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
570
    if (it == ins.end() || it->second.empty()) {
571 572
      return false;
    }
X
Xin Pan 已提交
573 574
    for (auto& input : it->second) {
      if (input == nullptr) {
575 576 577 578 579 580 581
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
582 583
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
584
    if (it == outs.end() || it->second.empty()) {
585 586
      return false;
    }
X
Xin Pan 已提交
587 588
    for (auto& output : it->second) {
      if (output == nullptr) {
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

607 608
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
609 610 611 612 613 614 615 616 617
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
618 619

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
620
                   "The type of %s and %s is not the same.", in, out);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
639 640
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
641 642 643 644 645 646 647 648
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
649
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
650
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
651 652 653 654 655
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
656

M
mozga-intel 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
676 677
  }

C
chengduo 已提交
678 679 680 681 682
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

683 684
  bool IsRuntime() const override { return true; }

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
717 718 719 720 721 722 723 724 725 726
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

741
 protected:
X
Xin Pan 已提交
742
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
743
    PADDLE_ENFORCE_NOT_NULL(var);
744 745 746 747 748
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
749
      PADDLE_THROW(
X
Xin Pan 已提交
750
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
751
          "type_id is %s.",
S
sneaxiy 已提交
752
          ToTypeName(var->Type()));
F
fengjiayi 已提交
753 754 755
    }
  }

X
Xin Pan 已提交
756 757 758 759 760 761 762 763
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
764
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
765
    PADDLE_THROW("Only compile time support this method");
766 767
  }

X
Xin Pan 已提交
768
  void SetDim(Variable* var, const DDim& dim) {
769 770 771 772 773
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
774
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
775
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
776 777 778 779 780 781 782 783 784 785 786 787
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
788 789 790
    }
  }

F
fengjiayi 已提交
791 792
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
793
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
794 795
  }

X
Xin Pan 已提交
796 797 798 799 800 801 802 803 804 805 806
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
807 808 809
    return ToVarType(var->Type());
  }

810 811 812 813 814 815 816 817 818 819 820 821 822 823
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
824 825
  }

826
  const OperatorBase& op_;
X
Xin Pan 已提交
827
  const RuntimeContext& ctx_;
828 829
};

830 831
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
832 833 834 835
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
836 837
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
838 839 840
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
841
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
842
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
843
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
844 845
}

B
baojun-nervana 已提交
846
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
847 848 849
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
850 851 852
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
853 854 855 856 857 858 859 860 861 862
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
863 864
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
865 866 867 868 869 870 871 872
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
  if (!enable_cache_runtime_context && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context = true;
  if (!all_kernels_must_compute_runtime_shape &&
      HasAttr(kAllKernelsMustComputeRuntimeShape))
    all_kernels_must_compute_runtime_shape = true;
  if (!enable_cache_runtime_context) {
L
luotao1 已提交
873 874 875 876
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
877 878 879 880 881 882
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
883 884 885 886 887 888 889 890
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
891
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
892
  auto* dev_ctx = pool.Get(place);
893

894
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
895
    ChooseKernel(*runtime_ctx, scope, place);
896 897
  }

L
Liu Yiqun 已提交
898
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
899

Y
yuyang18 已提交
900 901
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
902
  auto* transfer_scope =
903
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
904

Y
yuyang18 已提交
905 906 907 908
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

909 910
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
911
  }
Q
QI JUN 已提交
912

L
luotao1 已提交
913
  if (!all_kernels_must_compute_runtime_shape) {
L
luotao1 已提交
914
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
915 916
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
917 918
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
919 920
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
921

Y
yuyang18 已提交
922 923 924
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
925 926
  }

D
dzhwinter 已提交
927
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
928
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
929
    dev_ctx->Wait();
D
dzhwinter 已提交
930
  }
C
chengduoZH 已提交
931 932 933

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
934
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
935 936
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
937
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
938
      } else if (var->IsType<framework::SelectedRows>()) {
939 940
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
941 942 943
      }
    }
  }
Q
Qiao Longfei 已提交
944
}
X
Xin Pan 已提交
945

L
Liu Yiqun 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

982 983 984 985 986
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
987 988
}

Y
yuyang18 已提交
989 990 991 992
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
993
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
994 995 996
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
997
    auto* original_tensor =
C
chengduo 已提交
998
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
999
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1000 1001
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1002
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1003 1004 1005 1006
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1007
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1008
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1009 1010
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1011
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1022
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1023 1024 1025 1026 1027
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1028
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1029
              << " in Operator " << type_;
S
sneaxiy 已提交
1030 1031 1032
      continue;
    }

X
Xin Pan 已提交
1033 1034 1035 1036
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1037
      auto* var = input_vars[i];
X
Xin Pan 已提交
1038

Y
yuyang18 已提交
1039
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1040
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1041 1042 1043
        continue;
      }

C
chengduo 已提交
1044
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1062 1063
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1080
      }
1081
      if (!new_scope) {
Y
yuyang18 已提交
1082 1083
        new_scope = &scope.NewScope();
      }
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context, we get the cpu tensor each
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
      if (enable_cache_runtime_context) {
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1095 1096

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1097
      input_vars[i] = trans_var;
1098

Y
yuyang18 已提交
1099
      Tensor out;
Y
yuyang18 已提交
1100
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1101 1102 1103 1104 1105 1106
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1107

1108
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1109
    const ExecutionContext& ctx) const {
1110 1111 1112
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1113
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1114 1115 1116
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
1127
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu) is not initialized",
X
Xin Pan 已提交
1128
                         input.first, i);
1129
          proto::VarType::Type tmp = t->type();
1130
          PADDLE_ENFORCE(
1131
              tmp == data_type || data_type == dafault_data_type,
1132
              "DataType of Paddle Op %s %s must be the same. Get (%s) != (%s)",
1133 1134
              Type(), input.first, DataTypeToString(data_type),
              DataTypeToString(tmp));
Y
Yu Yang 已提交
1135 1136 1137 1138 1139
          data_type = tmp;
        }
      }
    }
  }
1140 1141 1142
  PADDLE_ENFORCE(data_type != dafault_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1143
}
1144

1145 1146 1147 1148 1149 1150 1151 1152
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1153 1154
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1155 1156
}

Q
Qiao Longfei 已提交
1157
}  // namespace framework
L
liaogang 已提交
1158
}  // namespace paddle