operator.cc 37.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20 21
#include <sstream>
#include <string>
#include <vector>
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
24
#include "paddle/fluid/framework/lod_tensor.h"
25
#include "paddle/fluid/framework/op_proto_maker.h"
26
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/shape_inference.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
31

D
dzhwinter 已提交
32
DECLARE_bool(benchmark);
C
chengduoZH 已提交
33 34 35
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
37

Q
Qiao Longfei 已提交
38 39 40
namespace paddle {
namespace framework {

41 42 43 44 45 46
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
47

Q
qiaolongfei 已提交
48 49
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
50
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
51
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
52
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
53 54 55 56 57
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

58 59
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
60
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
61 62
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
63 64
  }

M
minqiyang 已提交
65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
67
    if (UNLIKELY(!tensor.IsInitialized())) {
68
      return DDim({-1});
69
    }
M
minqiyang 已提交
70 71 72 73 74 75 76
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

Q
Qiao Longfei 已提交
125 126 127 128 129 130 131 132
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
136 137
      return default_lod;
    }
M
minqiyang 已提交
138
    return tensor.lod();
Q
Qiao Longfei 已提交
139 140 141 142 143
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
144 145 146 147 148
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
149
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
150 151 152 153 154 155
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
156
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
157 158 159 160 161 162
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

163
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
164 165 166
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
167
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
168
      PADDLE_THROW("Cannot run operator on place %s", place);
169
#else
P
peizhilin 已提交
170 171
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
172
#endif
P
peizhilin 已提交
173
    }
P
peizhilin 已提交
174

P
peizhilin 已提交
175 176 177 178 179
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
180
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
181 182 183 184
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
185

P
peizhilin 已提交
186 187 188
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
G
Gabor Buella 已提交
189
      throw;
P
peizhilin 已提交
190
    }
191

P
peizhilin 已提交
192 193 194 195
    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
G
Gabor Buella 已提交
196
      throw;
P
peizhilin 已提交
197 198 199 200 201 202 203 204 205 206
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
G
Gabor Buella 已提交
207
    throw;
P
peizhilin 已提交
208 209
  } catch (...) {
    std::rethrow_exception(std::current_exception());
210
  }
211 212
}

213
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
214
  return inputs_.find(name) != inputs_.end();
215 216
}

217
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
218
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
219
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
220 221
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
222
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
223 224
}

Y
Yu Yang 已提交
225 226
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
227
  auto it = inputs_.find(name);
228 229
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
230
  return it->second;
Y
Yan Chunwei 已提交
231 232
}

233
bool OperatorBase::HasOutputs(const std::string& name) const {
234
  if (outputs_.find(name) != outputs_.end()) {
235 236 237 238 239 240
    return true;
  } else {
    return false;
  }
}

241
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
242
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
243
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
244 245
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
246
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
247 248
}

Y
Yu Yang 已提交
249 250
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
251
  auto it = outputs_.find(name);
252 253
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
254
  return it->second;
Y
Yan Chunwei 已提交
255 256
}

257
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
258
  std::stringstream ss;
Y
Yu Yang 已提交
259
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
260 261
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
262 263
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
264 265
      auto var_name = input.second[i];
      ss << var_name;
266
      if (scope) {
Q
Qiao Longfei 已提交
267 268 269 270 271 272 273 274 275 276 277
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
278
        }
279
      }
Y
Yu Yang 已提交
280 281 282
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
283
    }
Y
Yu Yang 已提交
284
    ss << "]";
Y
Yu Yang 已提交
285 286
    ++it;
    if (it != inputs_.end()) {
287 288
      ss << ", ";
    }
Q
Qiao Longfei 已提交
289
  }
Y
Yu Yang 已提交
290
  ss << "}, outputs:{";
Y
Yu Yang 已提交
291 292
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
293 294
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
295 296
      auto var_name = output.second[i];
      ss << var_name;
297
      if (scope) {
Q
Qiao Longfei 已提交
298 299 300 301 302 303 304
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
305 306
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
307 308
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
309
        }
310
      }
Y
Yu Yang 已提交
311 312 313
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
314
    }
Y
Yu Yang 已提交
315
    ss << "]";
Y
Yu Yang 已提交
316 317
    ++it;
    if (it != outputs_.end()) {
318 319
      ss << ", ";
    }
Q
Qiao Longfei 已提交
320
  }
Y
Yu Yang 已提交
321
  ss << "}.";
Q
Qiao Longfei 已提交
322 323 324
  return ss.str();
}

Y
Yu Yang 已提交
325
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
326 327
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
328 329
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
330 331
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
332
}
333

Q
qijun 已提交
334 335
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
336
  for (auto& o : inputs_) {
Q
qijun 已提交
337 338 339 340 341 342
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
353
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
354 355

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
356
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
366 367
}

368 369 370
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
371
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
372 373

  for (auto& in : op_info->Proto().inputs()) {
374 375 376 377
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
378 379 380
  }

  for (auto& out : op_info->Proto().outputs()) {
381 382 383 384 385
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
402
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
403
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
404 405
}

C
chengduo 已提交
406
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
407 408 409 410
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
411
  } else {
Y
Yang Yang 已提交
412
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
413
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
414 415 416
  }
}

C
chengduo 已提交
417
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
418
  if (var->IsType<LoDTensor>()) {
419
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
420
  } else if (var->IsType<SelectedRows>()) {
421
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
422
  } else {
Y
Yang Yang 已提交
423
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
424
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
425 426 427
  }
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
460 461 462 463 464 465 466 467 468 469
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
470 471 472 473
const Variable* ExecutionContext::LegacyInputVar(
    const std::string& name) const {
  auto ipt = op_.Input(name);
  return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
X
Xin Pan 已提交
474 475
}

X
clean  
Xin Pan 已提交
476
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
477 478 479 480 481 482 483 484 485
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
486 487 488 489 490
Variable* ExecutionContext::LegacyOutputVar(const std::string& name) const {
  auto opt = op_.Output(name);
  return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}

491
template <>
492
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
493
  return Input<LoDTensor>(name);
494 495
}

X
Xin Pan 已提交
496
template <>
X
clean  
Xin Pan 已提交
497
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
498
    const std::string& name) const {
X
clean  
Xin Pan 已提交
499
  return LegacyInput<LoDTensor>(name);
X
Xin Pan 已提交
500 501
}

502
template <>
503
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
504
    const std::string& name) const {
X
Xin Pan 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
518
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
519 520 521 522 523 524 525 526
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const {
527 528 529
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
530
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
531
                 [&](const std::string& sub_name) -> const Tensor* {
532
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
533 534 535 536
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
537
                       sub_name, ToTypeName(var->Type()));
C
chengduo 已提交
538
                   return &(var->Get<LoDTensor>());
539
                 });
540 541 542 543
  return res;
}

template <>
544
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
545
  return Output<LoDTensor>(name);
546 547
}

X
Xin Pan 已提交
548
template <>
X
clean  
Xin Pan 已提交
549 550
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
  return LegacyOutput<LoDTensor>(name);
X
Xin Pan 已提交
551 552
}

553
template <>
554
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
555
    const std::string& name) const {
556 557 558 559 560
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
561
  std::vector<Tensor*> res;
562 563 564 565 566
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
567
                 });
568 569 570
  return res;
}

Y
Yu Yang 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

586 587
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
588 589
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
590
      : op_(op), ctx_(ctx) {}
591 592

  bool HasInput(const std::string& name) const override {
593
    // has only one input
X
Xin Pan 已提交
594
    const auto& ins = ctx_.inputs;
595 596
    auto it = ins.find(name);
    if (it == ins.end()) {
597 598
      return false;
    }
599
    const auto& in = it->second;
X
Xin Pan 已提交
600
    if (in.size() == 0) return false;
T
tensor-tang 已提交
601
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
602
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
603
    return in[0] != nullptr;
604 605 606
  }

  bool HasOutput(const std::string& name) const override {
607
    // has only one output
X
Xin Pan 已提交
608
    const auto& outs = ctx_.outputs;
609 610
    auto it = outs.find(name);
    if (it == outs.end()) {
611 612
      return false;
    }
613
    const auto& out = it->second;
X
Xin Pan 已提交
614
    if (out.size() == 0) {
615 616
      return false;
    }
T
tensor-tang 已提交
617 618
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
619
    return out[0] != nullptr;
620 621 622
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
623 624
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
625
    if (it == ins.end() || it->second.empty()) {
626 627
      return false;
    }
X
Xin Pan 已提交
628 629
    for (auto& input : it->second) {
      if (input == nullptr) {
630 631 632 633 634 635 636
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
637 638
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
639
    if (it == outs.end() || it->second.empty()) {
640 641
      return false;
    }
X
Xin Pan 已提交
642 643
    for (auto& output : it->second) {
      if (output == nullptr) {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

662 663
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
664 665 666 667 668 669 670 671 672
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
673 674

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
675
                   "The type of %s and %s is not the same.", in, out);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
694 695
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
696 697 698 699 700 701 702 703
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
704
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
705
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
706 707 708 709 710
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
711

M
mozga-intel 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
731 732
  }

C
chengduo 已提交
733 734 735 736 737
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

738 739
  bool IsRuntime() const override { return true; }

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
772 773 774 775 776 777 778 779 780 781
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

796
 protected:
X
Xin Pan 已提交
797
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
798
    PADDLE_ENFORCE_NOT_NULL(var);
799 800 801 802 803
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
804
      PADDLE_THROW(
X
Xin Pan 已提交
805
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
806
          "type_id is %s.",
S
sneaxiy 已提交
807
          ToTypeName(var->Type()));
F
fengjiayi 已提交
808 809 810
    }
  }

X
Xin Pan 已提交
811 812 813 814 815 816 817 818
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
819
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
820
    PADDLE_THROW("Only compile time support this method");
821 822
  }

X
Xin Pan 已提交
823
  void SetDim(Variable* var, const DDim& dim) {
824 825 826 827 828
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
829
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
830
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
831 832 833 834 835 836 837 838 839 840 841 842
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
843 844 845
    }
  }

F
fengjiayi 已提交
846 847
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
848
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
849 850
  }

X
Xin Pan 已提交
851 852 853 854 855 856 857 858 859 860 861
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
862 863 864
    return ToVarType(var->Type());
  }

865 866 867 868 869 870 871 872 873 874 875 876 877 878
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
879 880
  }

881
  const OperatorBase& op_;
X
Xin Pan 已提交
882
  const RuntimeContext& ctx_;
883 884
};

C
chengduoZH 已提交
885 886 887 888 889
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
890 891
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
892 893 894 895 896 897 898 899
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
900
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
901 902 903
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
904 905 906
  this->InferShape(&infer_shape_ctx);
}

907 908
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
909
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
910
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
911
  auto* dev_ctx = pool.Get(place);
912

913 914 915 916
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
917 918
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
919 920
  }

Q
qiaolongfei 已提交
921 922
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
923
  auto expected_kernel_key = this->GetExpectedKernelType(
924
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
M
minqiyang 已提交
925
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
926

927
  auto kernel_iter = kernels.find(expected_kernel_key);
928
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
929
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
930 931
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
932
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
933 934 935 936 937
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
938 939 940 941 942
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

943 944 945 946 947 948
  auto config_iter = kernel_configs_map_.find(expected_kernel_key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }

Y
yuyang18 已提交
949 950 951
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
952
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
953

Y
yuyang18 已提交
954 955 956 957 958 959
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
960
  }
Q
QI JUN 已提交
961

X
Xin Pan 已提交
962
  RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
X
Xin Pan 已提交
963
  this->InferShape(&infer_shape_ctx);
X
clean  
Xin Pan 已提交
964 965
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
966 967
  kernel_iter->second(
      ExecutionContext(*this, exec_scope, *dev_ctx, ctx, kernel_configs));
D
dzhwinter 已提交
968

Y
yuyang18 已提交
969 970 971
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
972 973
  }

D
dzhwinter 已提交
974
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
975
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
976
    dev_ctx->Wait();
D
dzhwinter 已提交
977
  }
C
chengduoZH 已提交
978 979 980

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
981
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
982 983 984
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
985 986
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
987 988 989
      }
    }
  }
Q
Qiao Longfei 已提交
990
}
X
Xin Pan 已提交
991

Y
yuyang18 已提交
992 993 994 995
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
996
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
997 998 999
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1000
    auto* original_tensor =
C
chengduo 已提交
1001
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1002
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1003 1004
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1005
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1006 1007 1008 1009
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1010
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1011
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1012 1013
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1014 1015
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
1016 1017 1018 1019
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1020
      auto* var = input_vars[i];
X
Xin Pan 已提交
1021

Y
yuyang18 已提交
1022
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1023
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1024 1025 1026
        continue;
      }

C
chengduo 已提交
1027
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1045 1046
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1063
      }
1064
      if (!new_scope) {
Y
yuyang18 已提交
1065 1066 1067 1068
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1069
      input_vars[i] = trans_var;
1070

Y
yuyang18 已提交
1071
      Tensor out;
Y
yuyang18 已提交
1072
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1073 1074 1075 1076 1077 1078
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1079

1080
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1081
    const ExecutionContext& ctx) const {
1082 1083 1084
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1085
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1086 1087 1088
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1099 1100
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
1101
          proto::VarType::Type tmp = t->type();
1102
          PADDLE_ENFORCE(
1103
              tmp == data_type || data_type == dafault_data_type,
X
Xin Pan 已提交
1104
              "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
1105
              Type(), DataTypeToString(data_type), DataTypeToString(tmp));
Y
Yu Yang 已提交
1106 1107 1108 1109 1110
          data_type = tmp;
        }
      }
    }
  }
1111 1112 1113
  PADDLE_ENFORCE(data_type != dafault_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1114
}
1115

1116 1117 1118 1119 1120 1121 1122 1123
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1124 1125
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1126 1127
}

Q
Qiao Longfei 已提交
1128
}  // namespace framework
L
liaogang 已提交
1129
}  // namespace paddle