pool_with_index_op.cc 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_with_index_op.h"
16
#include <memory>
C
chengduoZH 已提交
17 18 19 20

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
21
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
22
                             int stride) {
C
chengduoZH 已提交
23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of Pooling should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of Pooling should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Mask"), true,
                      platform::errors::InvalidArgument(
                          "Output(Mask) of Pooling should not be null."));
C
chengduoZH 已提交
41 42 43 44 45 46

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
47
    bool adaptive = ctx->Attrs().Get<bool>("adaptive");
C
chengduoZH 已提交
48

49 50 51 52 53
    PADDLE_ENFORCE(
        in_x_dims.size() == 4 || in_x_dims.size() == 5,
        platform::errors::InvalidArgument("Pooling intput should be 4-D or 5-D "
                                          "tensor but received %dD-Tensor",
                                          in_x_dims.size()));
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
56
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
57 58
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
59
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
60
      }
C
chengduoZH 已提交
61 62
    }

63 64 65 66 67 68 69 70 71 72
    PADDLE_ENFORCE_EQ(
        in_x_dims.size() - ksize.size(), 2U,
        platform::errors::InvalidArgument(
            "The input size %d minus the kernel size %d should equal to 2.",
            in_x_dims.size(), ksize.size()));
    PADDLE_ENFORCE_EQ(
        ksize.size(), strides.size(),
        platform::errors::InvalidArgument(
            "Strides size %d and pooling size %d should be the same.",
            strides.size(), ksize.size()));
73 74 75
    PADDLE_ENFORCE_EQ(
        ksize.size(), paddings.size(),
        platform::errors::InvalidArgument(
76 77
            "Paddings size %d and pooling size %d should be the same.",
            paddings.size(), ksize.size()));
C
chengduoZH 已提交
78 79

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
80 81 82 83 84 85 86
    if (adaptive) {
      output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
    } else {
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                 paddings[i], strides[i]));
      }
C
chengduoZH 已提交
87
    }
88 89
    ctx->SetOutputDim("Out", pten::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", pten::make_ddim(output_shape));
C
chengduoZH 已提交
90
  }
C
chengduoZH 已提交
91 92

 protected:
93
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
94
      const framework::ExecutionContext &ctx) const override {
95 96 97
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
98
  }
C
chengduoZH 已提交
99 100 101 102 103 104
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
105
  void InferShape(framework::InferShapeContext *ctx) const override {
106 107
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Mask"), true,
108
        platform::errors::InvalidArgument("Input(Mask) must not be null."));
109
    PADDLE_ENFORCE_EQ(
110 111 112 113 114 115 116 117
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) must not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should not be null."));
C
chengduoZH 已提交
118 119
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
120 121

 protected:
122
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
123
      const framework::ExecutionContext &ctx) const override {
124 125 126
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
C
chengduoZH 已提交
127
  }
C
chengduoZH 已提交
128 129 130 131
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
132
  void Make() override {
C
chengduoZH 已提交
133 134
    AddInput(
        "X",
K
kexinzhao 已提交
135 136 137 138
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
139
    AddOutput("Out",
K
kexinzhao 已提交
140 141 142 143 144
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
145
    AddOutput("Mask",
K
kexinzhao 已提交
146 147 148 149 150 151
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
152

C
fix bug  
chengduoZH 已提交
153
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
154 155
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
156
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
157 158
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
159
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
160
    AddAttr<bool>(
C
chengduoZH 已提交
161
        "global_pooling",
C
chengduoZH 已提交
162
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
163
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
164
        .SetDefault(false);
165 166 167 168 169 170 171 172
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
173 174 175
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
176
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
177
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
178 179
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
180
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
181
        "operator. "
C
chengduoZH 已提交
182
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
183
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
184
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
185 186

    AddComment(R"DOC(
K
kexinzhao 已提交
187 188
MaxPool2d Operator.

C
chengduoZH 已提交
189
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
190 191 192 193
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
194 195
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
196 197 198 199
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
200
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
201
  Output:
K
kexinzhao 已提交
202 203
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
204
  Where
K
kexinzhao 已提交
205
       $$
C
chengduoZH 已提交
206 207
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
208
       $$
209 210 211 212 213 214
  
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
      
K
kexinzhao 已提交
215

C
chengduoZH 已提交
216 217 218 219 220 221
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
222
  void Make() override {
K
kexinzhao 已提交
223 224 225 226 227 228
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
229
    AddOutput("Out",
K
kexinzhao 已提交
230 231 232 233 234
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
235
    AddOutput("Mask",
K
kexinzhao 已提交
236 237 238 239 240 241
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
242

C
fix bug  
chengduoZH 已提交
243
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
244 245
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
246
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
247 248
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
249
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
250
    AddAttr<bool>(
C
chengduoZH 已提交
251
        "global_pooling",
K
kexinzhao 已提交
252
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
253
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
254
        .SetDefault(false);
255 256 257 258 259 260 261 262
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
263
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
264
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
265
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
266
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
267
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
268 269
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
270
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
271
        "height, width) of pooling operator. "
C
chengduoZH 已提交
272
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
273
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
274
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
275

C
chengduoZH 已提交
276
    AddComment(R"DOC(
K
kexinzhao 已提交
277 278
MaxPool3d Operator.

C
chengduoZH 已提交
279 280
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
281 282 283 284
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
285
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
286 287 288 289
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
290
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
291
  Output:
K
kexinzhao 已提交
292 293
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
294
  Where
K
kexinzhao 已提交
295
       $$
C
chengduoZH 已提交
296 297 298
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
299
       $$
300 301 302 303 304
  
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
305

C
chengduoZH 已提交
306 307 308
)DOC");
  }
};
C
chengduoZH 已提交
309

310 311 312 313 314 315
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
316
  void Apply(GradOpPtr<T> op) const override {
317 318 319 320 321 322 323 324 325
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

Z
Zeng Jinle 已提交
326
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
327
    MaxPoolWithIndexOpGradNoNeedBufferVarsInferer, "X");
328

C
chengduoZH 已提交
329 330 331 332 333
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

334 335 336 337
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool2dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
338
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
339
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer);
C
chengduoZH 已提交
340 341

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
342
    max_pool2d_with_index,
Q
QI JUN 已提交
343 344 345
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
346
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
347
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
348 349 350
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
351
                                    int>);
C
chengduoZH 已提交
352

353 354 355 356
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool3dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
357
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
358
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer);
C
chengduoZH 已提交
359 360

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
361
    max_pool3d_with_index,
Q
QI JUN 已提交
362 363 364
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
365
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
366
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
367 368 369
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
370
                                    int>);