pool_with_index_op.cc 13.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_with_index_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
20
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
21
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
32
                   "Input(X) of Pooling should not be null.");
C
chengduoZH 已提交
33
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
34
                   "Output(Out) of Pooling should not be null.");
C
chengduoZH 已提交
35
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Output(Mask) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
43
    bool adaptive = ctx->Attrs().Get<bool>("adaptive");
C
chengduoZH 已提交
44 45

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
46
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
47

C
chengduoZH 已提交
48
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
49
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
50 51
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
52
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
53
      }
C
chengduoZH 已提交
54 55 56
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
57
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
58
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
59
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
60
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
61
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
62 63

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
64 65 66 67 68 69 70
    if (adaptive) {
      output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
    } else {
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                 paddings[i], strides[i]));
      }
C
chengduoZH 已提交
71 72 73 74
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
75 76

 protected:
77
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
78
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
79 80
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
C
chengduoZH 已提交
81
  }
C
chengduoZH 已提交
82 83 84 85 86 87
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
88
  void InferShape(framework::InferShapeContext *ctx) const override {
89
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
90
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
91 92
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
93 94
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
95 96

 protected:
97
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
98
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
99 100
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
C
chengduoZH 已提交
101
  }
C
chengduoZH 已提交
102 103 104 105
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() override {
C
chengduoZH 已提交
107 108
    AddInput(
        "X",
K
kexinzhao 已提交
109 110 111 112
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
113
    AddOutput("Out",
K
kexinzhao 已提交
114 115 116 117 118
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
119
    AddOutput("Mask",
K
kexinzhao 已提交
120 121 122 123 124 125
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
126

C
fix bug  
chengduoZH 已提交
127
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
128 129
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
130
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
131 132
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
133
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
134
    AddAttr<bool>(
C
chengduoZH 已提交
135
        "global_pooling",
C
chengduoZH 已提交
136
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
137
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
138
        .SetDefault(false);
139 140 141 142 143 144 145 146
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
147 148 149
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
150
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
151
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
152 153
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
154
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
155
        "operator. "
C
chengduoZH 已提交
156
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
157
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
158
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
159 160

    AddComment(R"DOC(
K
kexinzhao 已提交
161 162
MaxPool2d Operator.

C
chengduoZH 已提交
163
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
164 165 166 167
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
168 169
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
170 171 172 173
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
174
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
175
  Output:
K
kexinzhao 已提交
176 177
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
178
  Where
K
kexinzhao 已提交
179
       $$
C
chengduoZH 已提交
180 181
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
182
       $$
183 184 185 186 187 188
  
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
      
K
kexinzhao 已提交
189

C
chengduoZH 已提交
190 191 192 193 194 195
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
196
  void Make() override {
K
kexinzhao 已提交
197 198 199 200 201 202
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
203
    AddOutput("Out",
K
kexinzhao 已提交
204 205 206 207 208
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
209
    AddOutput("Mask",
K
kexinzhao 已提交
210 211 212 213 214 215
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
216

C
fix bug  
chengduoZH 已提交
217
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
218 219
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
220
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
221 222
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
223
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
224
    AddAttr<bool>(
C
chengduoZH 已提交
225
        "global_pooling",
K
kexinzhao 已提交
226
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
227
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
228
        .SetDefault(false);
229 230 231 232 233 234 235 236
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
237
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
238
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
239
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
240
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
241
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
242 243
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
244
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
245
        "height, width) of pooling operator. "
C
chengduoZH 已提交
246
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
247
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
248
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
249

C
chengduoZH 已提交
250
    AddComment(R"DOC(
K
kexinzhao 已提交
251 252
MaxPool3d Operator.

C
chengduoZH 已提交
253 254
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
255 256 257 258
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
259
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
260 261 262 263
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
264
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
265
  Output:
K
kexinzhao 已提交
266 267
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
268
  Where
K
kexinzhao 已提交
269
       $$
C
chengduoZH 已提交
270 271 272
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
273
       $$
274 275 276 277 278
  
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
279

C
chengduoZH 已提交
280 281 282
)DOC");
  }
};
C
chengduoZH 已提交
283

C
chengduoZH 已提交
284 285 286 287 288
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
289 290
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool2dWithIndexOpMaker,
291 292
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
293 294

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
295
    max_pool2d_with_index,
Q
QI JUN 已提交
296 297 298
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
299
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
300
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
301 302 303
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
304
                                    int>);
C
chengduoZH 已提交
305

Y
Yang Yang 已提交
306 307
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool3dWithIndexOpMaker,
308 309
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
310 311

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
312
    max_pool3d_with_index,
Q
QI JUN 已提交
313 314 315
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
316
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
317
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
318 319 320
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
321
                                    int>);