varbase_patch_methods.py 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
23
from ..framework import convert_np_dtype_to_dtype_, _in_legacy_dygraph
24
from .. import core
25
from .. import unique_name
C
chentianyu03 已提交
26
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, EagerParamBase, in_dygraph_mode
27
from .base import switch_to_static_graph
28
from .math_op_patch import monkey_patch_math_varbase
29
from .parallel import scale_loss
L
Leo Chen 已提交
30
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
31
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
32
import paddle.profiler as profiler
33
from paddle.profiler.utils import in_profiler_mode
H
hong 已提交
34
from paddle import _C_ops
35

36 37
_grad_scalar = None

38

39 40 41
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
42
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
43 44 45
    """

    def __init__(self, tensor, hook_id):
J
Jiabin Yang 已提交
46 47
        self._tensor = tensor if framework._in_eager_mode_ else weakref.ref(
            tensor)
48 49 50 51 52 53 54 55 56
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
J
Jiabin Yang 已提交
57
        tensor = self._tensor if framework._in_eager_mode_ else self._tensor()
58 59 60 61 62 63 64 65 66 67 68
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


69 70 71
_already_patch_repr = False


72
def monkey_patch_varbase():
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
100

101
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
102
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
103
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
J
Jiabin Yang 已提交
104
        if isinstance(self, (ParamBase, EagerParamBase)):
105 106
            attr_kwargs = self.__dict__.copy()
        else:
107 108
            attr_names = []
            for name in dir(self):
109 110 111 112
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
113 114 115 116 117 118 119 120
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
121
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
122
            del attr_kwargs['persistable']
123 124
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
125 126 127 128 129
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

130 131 132 133 134
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
135
            **This API is ONLY available in Dygraph mode**
136 137 138 139 140 141 142 143 144 145 146

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
147
                from paddle.fluid.dygraph import Linear
148 149
                import numpy as np

150
                data = np.ones([3, 1024], dtype='float32')
151
                with fluid.dygraph.guard():
152
                    linear = fluid.dygraph.Linear(1024, 4)
153
                    t = to_variable(data)
154
                    linear(t)  # call with default weight
155
                    custom_weight = np.random.randn(1024, 4).astype("float32")
156 157
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
158 159

        """
J
Jiabin Yang 已提交
160
        if framework._in_eager_mode_:
161
            base_tensor = core.eager.Tensor
162 163 164
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
S
Steffy-zxf 已提交
165 166 167 168 169 170 171 172 173 174 175 176
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
C
crystal 已提交
177
            assert self.shape == list(value.shape),  \
S
Steffy-zxf 已提交
178
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
C
crystal 已提交
179 180 181 182 183 184
                    self.name, self.shape, value.shape)

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
185

C
crystal 已提交
186
            assert self.dtype == dtype, \
S
Steffy-zxf 已提交
187
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
C
crystal 已提交
188
                    self.name, self.dtype, dtype)
189

190
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
191
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
192
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
193
            # this Interface behavior will be unifed in the future.
C
crystal 已提交
194
            self.value().get_tensor().set(value,
S
Steffy-zxf 已提交
195
                                          framework._current_expected_place())
196 197

    @framework.dygraph_only
198
    def backward(self, grad_tensor=None, retain_graph=False):
199
        """
200
        Run backward of current Graph which starts from current Tensor.
201

202 203 204 205
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

206
        Args:
C
chenjian 已提交
207 208
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
209 210 211
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

212
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
213 214 215
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
216 217 218 219 220 221
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

222
                import paddle
223 224 225 226 227 228 229 230 231 232 233 234 235 236
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
237

238 239 240 241 242 243 244 245 246 247 248
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

249
        """
J
Jiabin Yang 已提交
250
        if framework._non_static_mode():
251 252 253 254
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
                    "Gradient Backward", profiler.TracerEventType.Backward)
                record_event.begin()
255
            if grad_tensor is not None:
J
Jiabin Yang 已提交
256
                if framework._in_eager_mode_:
257
                    assert isinstance(
258 259
                        grad_tensor, core.eager.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
260 261 262 263
                else:
                    assert isinstance(
                        grad_tensor, paddle.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
264 265 266 267
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

J
Jiabin Yang 已提交
268
            if framework._in_eager_mode_:
269 270 271 272
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
273 274 275
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
276 277
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu(
            ) or paddle.is_compiled_with_mlu():
278
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
279
                scaled_loss = scale_loss(self)
J
Jiabin Yang 已提交
280
                if framework._in_eager_mode_:
281 282 283 284 285 286
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
287
            else:
J
Jiabin Yang 已提交
288
                if framework._in_eager_mode_:
289 290 291 292 293
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
294 295
            if in_profiler_mode():
                record_event.end()
296 297
        else:
            raise ValueError(
T
tianshuo78520a 已提交
298
                "Variable.backward() is only available in DyGraph mode")
299 300

    @framework.dygraph_only
301 302
    @deprecated(
        since="2.1.0",
303 304
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
305
    )
306 307
    def gradient(self):
        """
308 309 310 311
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

312
        Get the Gradient of Current Tensor.
313 314

        Returns:
315
            ndarray: Numpy value of the gradient of current Tensor
316 317 318 319

        Examples:
            .. code-block:: python

320
                import paddle
321

322 323 324
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
325
                print("grad of x: {}".format(x.gradient()))
326
                # [500.]
327 328

        """
J
Jiabin Yang 已提交
329
        if framework._in_eager_mode_:
330
            if self.grad is None:
331
                return None
332 333
            if self.grad.is_selected_rows():
                return (np.array(self.grad.numpy()), np.array(self.grad.rows()))
334 335 336 337
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
338

339 340 341 342
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
343
                    np.array(new_ivar.value().get_selected_rows().rows()))
344 345
            else:
                return np.array(new_ivar.value().get_tensor())
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
443 444
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
445 446 447

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
448
                size_dtype = core.size_of_dtype(dtype)
449 450 451 452 453
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
454
                gpu_memory_available = core.gpu_memory_available()
455 456 457 458 459 460 461 462 463 464 465 466 467
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
468 469 470
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
471 472 473 474
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
475 476 477 478
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
479 480 481 482 483 484 485 486 487 488 489 490

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

491 492 493
    @property
    def grad(self):
        """
494
        .. warning::
C
chenjian 已提交
495
          This API will return the tensor value of the gradient. If you want
496 497 498 499 500 501 502 503 504 505 506
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
507

508 509 510 511 512 513 514
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
515 516 517 518
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
519
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
520 521 522
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
523
        warnings.warn(warning_msg)
524
        return self._grad_ivar()
525

526 527 528 529 530 531
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

532 533
    def item(self, *args):
        """
C
chenjian 已提交
534
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
535
        single-element Tensor.
536 537 538 539 540 541 542 543 544

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

595 596
    def __str__(self):
        """
597
        Convert a VarBase object to a readable string.
598

599
        Returns(str): A readable string.
600 601 602 603

        Examples:
            .. code-block:: python

604
                import paddle
605
                x = paddle.rand([2, 5])
606
                print(x)
C
chenjian 已提交
607

608 609 610
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
611
        """
J
Jiabin Yang 已提交
612
        if framework._in_eager_mode_:
613 614
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
615 616 617
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
618

619 620 621 622 623 624 625 626 627 628 629
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
630

631 632 633 634 635 636 637 638 639 640 641 642 643
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
J
Jiabin Yang 已提交
644
        if framework._in_eager_mode_:
645
            new_varbase = core.eager.Tensor()
646 647
        else:
            new_varbase = core.VarBase()
648 649 650 651 652
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

653 654 655
    @property
    def block(self):
        return framework.default_main_program().global_block()
656

657 658 659
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
J
Jiabin Yang 已提交
660
        if framework._in_eager_mode_:
661 662 663 664 665 666
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
667 668 669 670

    def __bool__(self):
        return self.__nonzero__()

671
    def __array__(self, dtype=None):
672 673
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
696

W
WeiXin 已提交
697
    def contain_tensor(item):
698
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
699 700 701 702 703 704 705 706 707
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
708 709 710
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
711 712 713
                    return True
        return False

714
    def __getitem__(self, item):
W
WeiXin 已提交
715 716 717 718 719 720
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
721 722 723
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
724
                return True
725

W
WeiXin 已提交
726 727 728 729 730 731 732 733
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
734 735 736 737 738 739 740 741
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
742
    def __setitem__(self, item, value):
Z
zyfncg 已提交
743 744 745
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
746

Z
zyfncg 已提交
747 748 749 750 751 752 753 754
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
777 778
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
779 780 781
            return _setitem_impl_(self, item, value)

        else:
J
Jiabin Yang 已提交
782
            if framework._in_eager_mode_:
W
wanghuancoder 已提交
783 784 785 786
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
787

788 789
    @framework.dygraph_only
    def _grad_ivar(self):
790 791 792 793
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
794

795 796 797 798 799 800 801 802 803 804
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

    @framework.dygraph_only
    def clone(self):
C
chentianyu03 已提交
805 806 807
        if in_dygraph_mode():
            return _C_ops.final_state_assign(self)

808 809 810 811 812
        if _in_legacy_dygraph():
            output = core.VarBase()
        else:
            output = core.eager.Tensor()
        return _C_ops.assign(self, output)
813

814 815 816 817
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
818 819 820 821 822 823 824 825
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
826 827 828 829
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

830 831
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
847 848
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
849 850 851 852 853 854 855 856 857 858 859
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
860 861 862 863 864
    def cuda(self, device_id=0, blocking=True):
        if device_id is None:
            device_id = 0
        if not isinstance(device_id, int):
            raise ValueError("\'device_id\' must be a positive integer")
J
Jiabin Yang 已提交
865 866 867 868 869 870 871 872
        if self.place.is_gpu_place():
            return self
        else:
            res = self._copy_to(core.CUDAPlace(device_id), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
873 874 875 876 877 878 879 880 881 882
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

883 884
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                    print(sparse_x.values())
                    #[1, 2, 3, 4, 5]
        """

907 908
        if self.is_sparse_coo() or self.is_sparse_csr():
            return _C_ops.final_state_sparse_values(self)
909 910 911 912 913 914
        else:
            raise ValueError(
                "only SparseCooTensor and SparseCsrTensor have method values")

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                    dense_x = sparse_x.to_dense()
                    #[[0., 1., 0., 2.],
                    # [0., 0., 3., 0.],
                    # [4., 5., 0., 0.]]
        """

939 940 941 942 943 944 945 946 947
        if self.is_sparse_coo():
            return _C_ops.final_state_sparse_coo_to_dense(self)
        elif self.is_sparse_csr():
            return _C_ops.final_state_sparse_to_dense(self)
        else:
            return self

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                    dense_x = paddle.to_tensor(dense_x, dtype='float32')
                    sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                    #indices=[[0, 0, 1, 1],
                    #         [1, 3, 2, 3]],
                    #values=[1., 2., 3., 4.]
        """

970 971 972 973 974 975 976 977 978 979 980
        if self.is_sparse_csr():
            return _C_ops.final_state_sparse_to_sparse_coo(self, sparse_dim)
        elif self.is_sparse_coo():
            return self
        elif self.is_selected_rows():
            raise ValueError(
                "SelectedRows does not support to_sparse_coo method")
        else:
            #is dense tensor
            return _C_ops.final_state_sparse_dense_to_coo(self, sparse_dim)

J
Jiabin Yang 已提交
981
    if framework._in_eager_mode_ and not hasattr(core, "eager"):
982 983
        return

984 985
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
986
        ("_to_static_var", _to_static_var), ("set_value", set_value),
987
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
988 989 990 991
        ("inplace_version", inplace_version), ("gradient", gradient),
        ("register_hook", register_hook), ("__str__", __str__),
        ("__repr__", __str__), ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"), ("__array__", __array__),
W
WeiXin 已提交
992
        ("__getitem__", __getitem__), ("item", item),
993 994
        ("__setitem__", __setitem__), ("_to", _to), ("values", values),
        ("to_dense", to_dense), ("to_sparse_coo", to_sparse_coo)):
J
Jiabin Yang 已提交
995
        if framework._in_eager_mode_:
996
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
997
        else:
998 999
            setattr(core.VarBase, method_name, method)

J
Jiabin Yang 已提交
1000
    if framework._in_eager_mode_:
1001 1002 1003 1004
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "clone", clone)
        setattr(core.eager.Tensor, "value", value)
J
Jiabin Yang 已提交
1005 1006
        setattr(core.eager.Tensor, "cpu", cpu)
        setattr(core.eager.Tensor, "cuda", cuda)
W
wanghuancoder 已提交
1007
        setattr(core.eager.Tensor, "pin_memory", pin_memory)
J
Jiabin Yang 已提交
1008 1009
        setattr(core.eager.Tensor, "_slice", _slice)
        setattr(core.eager.Tensor, "_numel", _numel)
1010
        setattr(core.eager.Tensor, "_uva", _uva)
B
Baibaifan 已提交
1011
        setattr(core.eager.Tensor, "_clear_data", _clear_data)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
                prefix = 'paddle.'
                return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1030

1031 1032
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
1033

1034 1035
    # patch math methods for varbase
    monkey_patch_math_varbase()