varbase_patch_methods.py 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16 17
from .. import framework
from .. import core
18 19
from ..framework import Variable, Parameter, ParamBase
from .base import switch_to_static_graph
20
import numpy as np
21
from .math_op_patch import monkey_patch_math_varbase
22 23 24


def monkey_patch_varbase():
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
52 53 54 55

        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph. 
        # It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
        attr_not_need_keys = ['grad']
56 57 58
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
59 60 61 62 63 64
            attr_names = []
            for name in dir(self):
                if name not in attr_not_need_keys and not (
                        inspect.ismethod(getattr(self, name)) or
                        name.startswith('_')):
                    attr_names.append(name)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

80 81 82 83 84
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
85
            **This API is ONLY available in Dygraph mode**
86 87 88 89 90 91 92 93 94 95 96

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
97
                from paddle.fluid.dygraph import Linear
98 99
                import numpy as np

100
                data = np.ones([3, 1024], dtype='float32')
101
                with fluid.dygraph.guard():
102
                    linear = fluid.dygraph.Linear(1024, 4)
103
                    t = to_variable(data)
104
                    linear(t)  # call with default weight
105
                    custom_weight = np.random.randn(1024, 4).astype("float32")
106 107
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

        """
        assert isinstance(value, (np.ndarray, core.VarBase)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
        if isinstance(value, core.VarBase):
            value_np = value.numpy()

        self_tensor_np = self.numpy()

        assert self_tensor_np.shape == value_np.shape, \
            "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype, \
            "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self_tensor_np.dtype, value_np.dtype)

        self.value().get_tensor().set(value_np,
                                      framework._current_expected_place())

    @framework.dygraph_only
131
    def backward(self, retain_graph=False):
132 133
        """
        **Notes**:
T
tianshuo78520a 已提交
134
            **This API is ONLY available in Dygraph mode**
135

136
        Run backward of current Graph which starts from current Tensor.
137 138

        Args:
139
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
140 141 142
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
143 144 145 146 147 148 149 150

        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

                import numpy as np
151 152
                import paddle
                paddle.disable_static()
153 154

                x = np.ones([2, 2], np.float32)
155 156 157 158 159 160 161 162 163 164
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
165 166 167

        """
        if framework.in_dygraph_mode():
168
            self._run_backward(framework._dygraph_tracer(), retain_graph)
169 170
        else:
            raise ValueError(
T
tianshuo78520a 已提交
171
                "Variable.backward() is only available in DyGraph mode")
172 173 174 175 176

    @framework.dygraph_only
    def gradient(self):
        """
        **Notes**:
T
tianshuo78520a 已提交
177
            **This API is ONLY available in Dygraph mode**
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

        Get the Gradient of Current Variable

        Returns:
            ndarray: Numpy value of the gradient of current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
199
                    loss2.backward()
200 201 202 203
                    print(loss2.gradient())

        """
        if self._grad_ivar() is None:
204 205
            return None

206 207 208 209 210 211 212
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

213 214 215 216 217 218 219 220
    @property
    def grad(self):
        """
        The alias of gradient().
        """

        return self.gradient()

221 222
    def __str__(self):
        """
223
        Convert a VarBase object to a readable string.
224

225
        Returns(str): A readable string.
226 227 228 229

        Examples:
            .. code-block:: python

230
                import paddle
231
                paddle.disable_static()
232 233 234 235 236 237 238 239
                x = paddle.rand([1, 5])
                print(x)
                # Variable: eager_tmp_0
                #   - place: CUDAPlace(0)
                #   - shape: [1, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [0.645307 0.597973 0.732793 0.646921 0.540328]
240
                paddle.enable_static()
241
        """
242 243
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
244
            return 'Tensor: %s\n%s' % (self.name, str(tensor))
245
        else:
246
            return 'Tensor: %s, not initialized' % (self.name)
247 248 249 250

    @property
    def block(self):
        return framework.default_main_program().global_block()
251

252 253 254 255 256 257 258 259 260 261 262 263
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
264
        ("_to_static_var", _to_static_var), ("set_value", set_value),
265 266 267
        ("block", block), ("backward", backward), ("grad", grad),
        ("gradient", gradient), ("__str__", __str__), ("__repr__", __str__),
        ("__module__", "paddle"), ("__name__", "Tensor")):
268
        setattr(core.VarBase, method_name, method)
269 270 271

    # patch math methods for varbase
    monkey_patch_math_varbase()