Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f78cc3da
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f78cc3da
编写于
4月 07, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
4月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Sparse API to_dense, to_sparse_coo and values (#41394)
上级
91266b96
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
663 addition
and
109 deletion
+663
-109
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+4
-41
paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
+103
-0
paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
+30
-0
paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
+140
-0
paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
+30
-0
paddle/phi/kernels/sparse/sparse_mask_kernel.h
paddle/phi/kernels/sparse/sparse_mask_kernel.h
+30
-0
paddle/phi/kernels/sparse/sparse_utils_grad_kernel.cc
paddle/phi/kernels/sparse/sparse_utils_grad_kernel.cc
+98
-0
paddle/phi/kernels/sparse/sparse_utils_grad_kernel.h
paddle/phi/kernels/sparse/sparse_utils_grad_kernel.h
+36
-0
paddle/phi/kernels/sparse/sparse_utils_kernel.h
paddle/phi/kernels/sparse/sparse_utils_kernel.h
+14
-0
python/paddle/fluid/dygraph/varbase_patch_methods.py
python/paddle/fluid/dygraph/varbase_patch_methods.py
+34
-1
python/paddle/fluid/tests/unittests/test_sparse_activation_op.py
...paddle/fluid/tests/unittests/test_sparse_activation_op.py
+15
-6
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
+2
-3
python/paddle/fluid/tests/unittests/test_sparse_copy_op.py
python/paddle/fluid/tests/unittests/test_sparse_copy_op.py
+2
-4
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
+72
-48
python/paddle/tensor/to_string.py
python/paddle/tensor/to_string.py
+6
-6
python/paddle/utils/code_gen/sparse_api.yaml
python/paddle/utils/code_gen/sparse_api.yaml
+27
-0
python/paddle/utils/code_gen/sparse_bw_api.yaml
python/paddle/utils/code_gen/sparse_bw_api.yaml
+20
-0
未找到文件。
paddle/fluid/pybind/eager_method.cc
浏览文件 @
f78cc3da
...
...
@@ -1271,21 +1271,6 @@ static PyObject* tensor_method_is_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_to_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
int64_t
sparse_dim
=
CastPyArg2AttrLong
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
auto
coo_tensor
=
self
->
tensor
.
to_sparse_coo
(
sparse_dim
);
egr
::
EagerUtils
::
autograd_meta
(
&
coo_tensor
)
->
SetStopGradient
(
egr
::
EagerUtils
::
autograd_meta
(
&
self
->
tensor
)
->
StopGradient
());
egr
::
EagerUtils
::
autograd_meta
(
&
coo_tensor
)
->
SetPersistable
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
Persistable
());
return
ToPyObject
(
coo_tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_to_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
...
...
@@ -1300,20 +1285,6 @@ static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_to_dense
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
dense_tensor
=
self
->
tensor
.
to_dense
();
egr
::
EagerUtils
::
autograd_meta
(
&
dense_tensor
)
->
SetStopGradient
(
egr
::
EagerUtils
::
autograd_meta
(
&
self
->
tensor
)
->
StopGradient
());
egr
::
EagerUtils
::
autograd_meta
(
&
dense_tensor
)
->
SetPersistable
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
Persistable
());
return
ToPyObject
(
dense_tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__inplace_version
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
...
...
@@ -1530,17 +1501,13 @@ PyMethodDef variable_methods[] = {
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__copy_gradient_from
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"non_zero_indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
{
"indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"non_zero_elements"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
{
"values"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"non_zero_crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
{
"crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"non_zero_cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
{
"cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
...
...
@@ -1548,12 +1515,8 @@ PyMethodDef variable_methods[] = {
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_dense"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_dense
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
...
...
paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
0 → 100644
浏览文件 @
f78cc3da
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/api/ext/dispatch.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
>
void
SparseMaskCPUKernel
(
const
CPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
SparseCooTensor
&
mask
,
SparseCooTensor
*
out
)
{
const
DDim
&
dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
x
.
dims
(),
mask
.
dims
(),
phi
::
errors
::
InvalidArgument
(
"the input x and mask must have the shape"
));
const
DenseTensor
&
indices
=
mask
.
non_zero_indices
();
const
DenseTensor
&
values
=
mask
.
non_zero_elements
();
int
sparse_dim
=
indices
.
dims
().
size
();
std
::
vector
<
int64_t
>
sparse_offsets
(
sparse_dim
);
int64_t
offset
=
1
;
for
(
int
i
=
sparse_dim
-
1
;
i
>=
0
;
i
--
)
{
sparse_offsets
[
i
]
=
offset
;
offset
*=
dims
[
i
];
}
DenseTensor
out_indices
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
indices
);
DenseTensor
out_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
values
);
// the out_indices is same as indices of mask
phi
::
Copy
(
dev_ctx
,
indices
,
dev_ctx
.
GetPlace
(),
false
,
&
out_indices
);
const
IntT
*
indices_ptr
=
indices
.
data
<
IntT
>
();
T
*
out_values_ptr
=
out_values
.
data
<
T
>
();
const
T
*
x_ptr
=
x
.
data
<
T
>
();
const
int64_t
non_zero_num
=
mask
.
nnz
();
auto
dims_2d
=
flatten_to_2d
(
dims
,
sparse_dim
);
const
int
cols
=
dims_2d
[
1
];
for
(
int64_t
i
=
0
;
i
<
non_zero_num
;
i
++
)
{
int64_t
index
=
0
;
for
(
int
j
=
0
;
j
<
sparse_dim
;
j
++
)
{
index
+=
indices_ptr
[
j
*
non_zero_num
+
i
]
*
sparse_offsets
[
j
];
}
memcpy
(
out_values_ptr
+
i
*
cols
,
x_ptr
+
index
*
cols
,
cols
*
sizeof
(
T
));
}
out
->
SetMember
(
out_indices
,
out_values
,
dims
,
true
);
}
/**
* @brief Filter the DenseTensor x by the
* mask.non_zero_indices() and output a SparseCooTensor
* x and mask must have the same shape.
**/
template
<
typename
T
,
typename
Context
>
void
SparseMaskKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
SparseCooTensor
&
mask
,
SparseCooTensor
*
out
)
{
PD_DISPATCH_INTEGRAL_TYPES
(
mask
.
non_zero_indices
().
dtype
(),
"SparseMaskCPUKernel"
,
([
&
]
{
SparseMaskCPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
mask
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_mask
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseMaskKernel
,
float
,
double
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
1
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
浏览文件 @
f78cc3da
...
...
@@ -364,3 +364,33 @@ PD_REGISTER_KERNEL(sparse_csr_to_dense,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
coo_values
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CooValuesKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
csr_values
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CsrValuesKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
0 → 100644
浏览文件 @
f78cc3da
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"
#include "paddle/phi/api/ext/dispatch.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
>
__global__
void
MaskKernel
(
const
T
*
x_ptr
,
const
IntT
*
indices_ptr
,
const
int64_t
*
sparse_offsets
,
const
int64_t
non_zero_num
,
const
int
cols
,
const
int
sparse_dim
,
T
*
out_values_ptr
)
{
CUDA_KERNEL_LOOP_TYPE
(
i
,
non_zero_num
*
cols
,
int64_t
)
{
int64_t
out_i
=
i
/
cols
;
int64_t
col_i
=
i
-
out_i
*
cols
;
int64_t
index
=
0
;
for
(
int
j
=
0
;
j
<
sparse_dim
;
j
++
)
{
index
+=
indices_ptr
[
j
*
non_zero_num
+
i
]
*
sparse_offsets
[
j
];
}
out_values_ptr
[
out_i
*
cols
+
col_i
]
=
x_ptr
[
index
*
cols
+
col_i
];
}
}
template
<
typename
T
,
typename
IntT
>
void
SparseMaskGPUKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
SparseCooTensor
&
mask
,
SparseCooTensor
*
out
)
{
const
DDim
&
dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
x
.
dims
(),
mask
.
dims
(),
phi
::
errors
::
InvalidArgument
(
"the input x and mask must have the shape"
));
const
DenseTensor
&
indices
=
mask
.
non_zero_indices
();
const
DenseTensor
&
values
=
mask
.
non_zero_elements
();
int
sparse_dim
=
indices
.
dims
().
size
();
DenseTensor
sparse_offsets
=
phi
::
Empty
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT64
,
{
sparse_dim
},
DataLayout
::
NCHW
));
std
::
vector
<
int64_t
>
h_sparse_offsets
(
sparse_dim
);
int64_t
offset
=
1
;
for
(
int
i
=
sparse_dim
-
1
;
i
>=
0
;
i
--
)
{
h_sparse_offsets
[
i
]
=
offset
;
offset
*=
dims
[
i
];
}
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
sparse_offsets
.
data
<
int64_t
>
(),
&
h_sparse_offsets
[
0
],
sizeof
(
int64_t
)
*
sparse_dim
,
#ifdef PADDLE_WITH_HIP
hipMemcpyHostToDevice
,
#else
cudaMemcpyHostToDevice
,
#endif
dev_ctx
.
stream
());
DenseTensor
out_indices
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
indices
);
DenseTensor
out_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
values
);
phi
::
Copy
(
dev_ctx
,
indices
,
dev_ctx
.
GetPlace
(),
false
,
&
out_indices
);
const
IntT
*
indices_ptr
=
indices
.
data
<
IntT
>
();
T
*
out_values_ptr
=
out_values
.
data
<
T
>
();
const
T
*
x_ptr
=
x
.
data
<
T
>
();
const
int64_t
non_zero_num
=
mask
.
nnz
();
auto
dims_2d
=
flatten_to_2d
(
dims
,
sparse_dim
);
const
int
cols
=
dims_2d
[
1
];
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
non_zero_num
*
cols
,
1
);
MaskKernel
<
T
,
IntT
><<<
config
.
block_per_grid
,
config
.
thread_per_block
>>>
(
x_ptr
,
indices_ptr
,
sparse_offsets
.
data
<
int64_t
>
(),
non_zero_num
,
cols
,
sparse_dim
,
out_values_ptr
);
out
->
SetMember
(
out_indices
,
out_values
,
dims
,
true
);
}
/**
* @brief Filter the DenseTensor x by the
* mask.non_zero_indices() and output a SparseCooTensor
* x and mask must have the same shape.
**/
template
<
typename
T
,
typename
Context
>
void
SparseMaskKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
SparseCooTensor
&
mask
,
SparseCooTensor
*
out
)
{
PD_DISPATCH_INTEGRAL_TYPES
(
mask
.
non_zero_indices
().
dtype
(),
"SparseMaskGPUKernel"
,
([
&
]
{
SparseMaskGPUKernel
<
T
,
data_t
>
(
dev_ctx
,
x
,
mask
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sparse_mask
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseMaskKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
1
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
浏览文件 @
f78cc3da
...
...
@@ -635,3 +635,33 @@ PD_REGISTER_KERNEL(sparse_csr_to_dense,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
coo_values
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CooValuesKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
csr_values
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CsrValuesKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
paddle/phi/kernels/sparse/sparse_mask_kernel.h
0 → 100644
浏览文件 @
f78cc3da
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
SparseMaskKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
SparseCooTensor
&
mask
,
SparseCooTensor
*
out
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/sparse_utils_grad_kernel.cc
0 → 100644
浏览文件 @
f78cc3da
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/sparse_utils_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
CooValuesGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
out_grad
,
SparseCooTensor
*
x_grad
)
{
x_grad
->
SetMember
(
x
.
non_zero_indices
(),
out_grad
,
x
.
dims
(),
true
);
}
template
<
typename
T
,
typename
Context
>
void
SparseCooToDenseGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
out_grad
,
SparseCooTensor
*
x_grad
)
{
SparseMaskKernel
<
T
,
Context
>
(
dev_ctx
,
out_grad
,
x
,
x_grad
);
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
coo_values_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CooValuesGradKernel
,
float
,
double
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
sparse_coo_to_dense_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCooToDenseGradKernel
,
float
,
double
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
coo_values_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CooValuesGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
sparse_coo_to_dense_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCooToDenseGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
#endif
paddle/phi/kernels/sparse/sparse_utils_grad_kernel.h
0 → 100644
浏览文件 @
f78cc3da
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
CooValuesGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
out_grad
,
SparseCooTensor
*
x_grad
);
template
<
typename
T
,
typename
Context
>
void
SparseCooToDenseGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
out_grad
,
SparseCooTensor
*
x_grad
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/sparse_utils_kernel.h
浏览文件 @
f78cc3da
...
...
@@ -133,5 +133,19 @@ DenseTensor SparseCsrToDense(const Context& dev_ctx, const SparseCsrTensor& x) {
return
dense
;
}
template
<
typename
T
,
typename
Context
>
void
CooValuesKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
DenseTensor
*
out
)
{
*
out
=
x
.
non_zero_elements
();
}
template
<
typename
T
,
typename
Context
>
void
CsrValuesKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
DenseTensor
*
out
)
{
*
out
=
x
.
non_zero_elements
();
}
}
// namespace sparse
}
// namespace phi
python/paddle/fluid/dygraph/varbase_patch_methods.py
浏览文件 @
f78cc3da
...
...
@@ -869,6 +869,38 @@ def monkey_patch_varbase():
res
.
persistable
=
self
.
persistable
return
res
@
framework
.
dygraph_only
def
values
(
self
):
if
self
.
is_sparse_coo
():
return
_C_ops
.
final_state_sparse_coo_values
(
self
)
elif
self
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_csr_values
(
self
)
else
:
raise
ValueError
(
"only SparseCooTensor and SparseCsrTensor have method values"
)
@
framework
.
dygraph_only
def
to_dense
(
self
):
if
self
.
is_sparse_coo
():
return
_C_ops
.
final_state_sparse_coo_to_dense
(
self
)
elif
self
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_to_dense
(
self
)
else
:
return
self
@
framework
.
dygraph_only
def
to_sparse_coo
(
self
,
sparse_dim
):
if
self
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_to_sparse_coo
(
self
,
sparse_dim
)
elif
self
.
is_sparse_coo
():
return
self
elif
self
.
is_selected_rows
():
raise
ValueError
(
"SelectedRows does not support to_sparse_coo method"
)
else
:
#is dense tensor
return
_C_ops
.
final_state_sparse_dense_to_coo
(
self
,
sparse_dim
)
if
framework
.
_in_eager_mode_
and
not
hasattr
(
core
,
"eager"
):
return
...
...
@@ -881,7 +913,8 @@ def monkey_patch_varbase():
(
"__repr__"
,
__str__
),
(
"__deepcopy__"
,
__deepcopy__
),
(
"__module__"
,
"paddle"
),
(
"__array__"
,
__array__
),
(
"__getitem__"
,
__getitem__
),
(
"item"
,
item
),
(
"__setitem__"
,
__setitem__
),
(
"_to"
,
_to
)):
(
"__setitem__"
,
__setitem__
),
(
"_to"
,
_to
),
(
"values"
,
values
),
(
"to_dense"
,
to_dense
),
(
"to_sparse_coo"
,
to_sparse_coo
)):
if
framework
.
_in_eager_mode_
:
setattr
(
core
.
eager
.
Tensor
,
method_name
,
method
)
else
:
...
...
python/paddle/fluid/tests/unittests/test_sparse_activation_op.py
浏览文件 @
f78cc3da
...
...
@@ -23,19 +23,28 @@ class TestSparseActivation(unittest.TestCase):
def
test_sparse_relu
(
self
):
with
_test_eager_guard
():
x
=
[[
0
,
-
1
,
0
,
2
],
[
0
,
0
,
-
3
,
0
],
[
4
,
5
,
0
,
0
]]
def
dense_relu
(
x
):
dense_x
=
paddle
.
to_tensor
(
x
,
dtype
=
'float32'
,
stop_gradient
=
False
)
dense_relu
=
paddle
.
nn
.
ReLU
()
dense_out
=
dense_relu
(
dense_x
)
dense_out
.
backward
(
dense_out
)
return
dense_out
,
dense_x
.
grad
dense_x
=
paddle
.
to_tensor
(
x
,
dtype
=
'float32'
,
stop_gradient
=
False
)
sparse_dim
=
2
sparse_x
=
dense_x
.
to_sparse_coo
(
sparse_dim
)
sparse_relu
=
paddle
.
sparse
.
ReLU
()
sparse_out
=
sparse_relu
(
sparse_x
)
dense_relu
=
paddle
.
nn
.
ReLU
()
#TODO: replace non_zero_elements() as values()
dense_out
=
dense_relu
(
sparse_x
.
non_zero_elements
())
actual_result
=
sparse_out
.
non_zero_elements
().
numpy
()
assert
np
.
array_equal
(
dense_out
.
numpy
(),
actual_result
)
dense_out
.
backward
(
dense_out
)
sparse_out
.
backward
(
sparse_out
)
dense_out
,
dense_x_grad
=
dense_relu
(
x
)
assert
np
.
array_equal
(
dense_out
.
numpy
(),
sparse_out
.
to_dense
().
numpy
())
assert
np
.
array_equal
(
dense_x_grad
.
numpy
(),
sparse_x
.
grad
.
to_dense
().
numpy
())
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
浏览文件 @
f78cc3da
...
...
@@ -46,9 +46,8 @@ class TestSparseConv(unittest.TestCase):
out
.
backward
(
out
)
#At present, only backward can be verified to work normally
#TODO(zhangkaihuo): compare the result with dense conv
print
(
sparse_input
.
grad
.
non_zero_elements
())
assert
np
.
array_equal
(
correct_out_values
,
out
.
non_zero_elements
().
numpy
())
print
(
sparse_input
.
grad
.
values
())
assert
np
.
array_equal
(
correct_out_values
,
out
.
values
().
numpy
())
#TODO: Add more test case
python/paddle/fluid/tests/unittests/test_sparse_copy_op.py
浏览文件 @
f78cc3da
...
...
@@ -33,8 +33,7 @@ class TestSparseCopy(unittest.TestCase):
dense_x_2
=
paddle
.
to_tensor
(
np_x_2
,
dtype
=
'float32'
)
coo_x_2
=
dense_x_2
.
to_sparse_coo
(
2
)
coo_x_2
.
copy_
(
coo_x
,
True
)
assert
np
.
array_equal
(
np_values
,
coo_x_2
.
non_zero_elements
().
numpy
())
assert
np
.
array_equal
(
np_values
,
coo_x_2
.
values
().
numpy
())
def
test_copy_sparse_csr
(
self
):
with
_test_eager_guard
():
...
...
@@ -47,5 +46,4 @@ class TestSparseCopy(unittest.TestCase):
dense_x_2
=
paddle
.
to_tensor
(
np_x_2
,
dtype
=
'float32'
)
csr_x_2
=
dense_x_2
.
to_sparse_csr
()
csr_x_2
.
copy_
(
csr_x
,
True
)
assert
np
.
array_equal
(
np_values
,
csr_x_2
.
non_zero_elements
().
numpy
())
assert
np
.
array_equal
(
np_values
,
csr_x_2
.
values
().
numpy
())
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
浏览文件 @
f78cc3da
...
...
@@ -23,18 +23,15 @@ from paddle.fluid.framework import _test_eager_guard
class
TestSparseCreate
(
unittest
.
TestCase
):
def
test_create_coo_by_tensor
(
self
):
with
_test_eager_guard
():
non_zero_
indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
non_zero_element
s
=
[
1
,
2
,
3
,
4
,
5
]
indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
value
s
=
[
1
,
2
,
3
,
4
,
5
]
dense_shape
=
[
3
,
4
]
dense_indices
=
paddle
.
to_tensor
(
non_zero_indices
)
dense_elements
=
paddle
.
to_tensor
(
non_zero_elements
,
dtype
=
'float32'
)
dense_indices
=
paddle
.
to_tensor
(
indices
)
dense_elements
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
)
coo
=
paddle
.
sparse
.
sparse_coo_tensor
(
dense_indices
,
dense_elements
,
dense_shape
,
stop_gradient
=
False
)
assert
np
.
array_equal
(
non_zero_indices
,
coo
.
non_zero_indices
().
numpy
())
assert
np
.
array_equal
(
non_zero_elements
,
coo
.
non_zero_elements
().
numpy
())
assert
np
.
array_equal
(
indices
,
coo
.
indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
values
().
numpy
())
def
test_create_coo_by_np
(
self
):
with
_test_eager_guard
():
...
...
@@ -42,20 +39,18 @@ class TestSparseCreate(unittest.TestCase):
values
=
[
1.0
,
2.0
,
3.0
]
dense_shape
=
[
2
,
3
]
coo
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
)
print
(
coo
)
assert
np
.
array_equal
(
indices
,
coo
.
non_zero_indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
non_zero_elements
().
numpy
())
assert
np
.
array_equal
(
indices
,
coo
.
indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
values
().
numpy
())
def
test_create_csr_by_tensor
(
self
):
with
_test_eager_guard
():
non_zero_
crows
=
[
0
,
2
,
3
,
5
]
non_zero_
cols
=
[
1
,
3
,
2
,
0
,
1
]
non_zero_element
s
=
[
1
,
2
,
3
,
4
,
5
]
crows
=
[
0
,
2
,
3
,
5
]
cols
=
[
1
,
3
,
2
,
0
,
1
]
value
s
=
[
1
,
2
,
3
,
4
,
5
]
dense_shape
=
[
3
,
4
]
dense_crows
=
paddle
.
to_tensor
(
non_zero_crows
)
dense_cols
=
paddle
.
to_tensor
(
non_zero_cols
)
dense_elements
=
paddle
.
to_tensor
(
non_zero_elements
,
dtype
=
'float32'
)
dense_crows
=
paddle
.
to_tensor
(
crows
)
dense_cols
=
paddle
.
to_tensor
(
cols
)
dense_elements
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
)
stop_gradient
=
False
csr
=
paddle
.
sparse
.
sparse_csr_tensor
(
dense_crows
,
...
...
@@ -63,7 +58,6 @@ class TestSparseCreate(unittest.TestCase):
dense_elements
,
dense_shape
,
stop_gradient
=
stop_gradient
)
print
(
csr
)
def
test_create_csr_by_np
(
self
):
with
_test_eager_guard
():
...
...
@@ -73,9 +67,9 @@ class TestSparseCreate(unittest.TestCase):
dense_shape
=
[
3
,
4
]
csr
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
dense_shape
)
assert
np
.
array_equal
(
crows
,
csr
.
non_zero_
crows
().
numpy
())
assert
np
.
array_equal
(
cols
,
csr
.
non_zero_
cols
().
numpy
())
assert
np
.
array_equal
(
values
,
csr
.
non_zero_element
s
().
numpy
())
assert
np
.
array_equal
(
crows
,
csr
.
crows
().
numpy
())
assert
np
.
array_equal
(
cols
,
csr
.
cols
().
numpy
())
assert
np
.
array_equal
(
values
,
csr
.
value
s
().
numpy
())
def
test_place
(
self
):
with
_test_eager_guard
():
...
...
@@ -86,8 +80,8 @@ class TestSparseCreate(unittest.TestCase):
coo
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
,
place
=
place
)
assert
coo
.
place
.
is_cpu_place
()
assert
coo
.
non_zero_element
s
().
place
.
is_cpu_place
()
assert
coo
.
non_zero_
indices
().
place
.
is_cpu_place
()
assert
coo
.
value
s
().
place
.
is_cpu_place
()
assert
coo
.
indices
().
place
.
is_cpu_place
()
crows
=
[
0
,
2
,
3
,
5
]
cols
=
[
1
,
3
,
2
,
0
,
1
]
...
...
@@ -95,9 +89,9 @@ class TestSparseCreate(unittest.TestCase):
csr
=
paddle
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
[
3
,
5
],
place
=
place
)
assert
csr
.
place
.
is_cpu_place
()
assert
csr
.
non_zero_
crows
().
place
.
is_cpu_place
()
assert
csr
.
non_zero_
cols
().
place
.
is_cpu_place
()
assert
csr
.
non_zero_element
s
().
place
.
is_cpu_place
()
assert
csr
.
crows
().
place
.
is_cpu_place
()
assert
csr
.
cols
().
place
.
is_cpu_place
()
assert
csr
.
value
s
().
place
.
is_cpu_place
()
def
test_dtype
(
self
):
with
_test_eager_guard
():
...
...
@@ -131,37 +125,67 @@ class TestSparseConvert(unittest.TestCase):
def
test_to_sparse_coo
(
self
):
with
_test_eager_guard
():
x
=
[[
0
,
1
,
0
,
2
],
[
0
,
0
,
3
,
0
],
[
4
,
5
,
0
,
0
]]
non_zero_
indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
non_zero_elements
=
[
1
,
2
,
3
,
4
,
5
]
dense_x
=
paddle
.
to_tensor
(
x
)
indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
values
=
[
1.0
,
2.0
,
3.0
,
4.0
,
5.0
]
dense_x
=
paddle
.
to_tensor
(
x
,
dtype
=
'float32'
,
stop_gradient
=
False
)
out
=
dense_x
.
to_sparse_coo
(
2
)
print
(
out
)
assert
np
.
array_equal
(
out
.
non_zero_indices
().
numpy
(),
non_zero_indices
)
assert
np
.
array_equal
(
out
.
non_zero_elements
().
numpy
(),
non_zero_elements
)
dense_tensor
=
out
.
to_dense
()
assert
np
.
array_equal
(
dense_tensor
.
numpy
(),
x
)
assert
np
.
array_equal
(
out
.
indices
().
numpy
(),
indices
)
assert
np
.
array_equal
(
out
.
values
().
numpy
(),
values
)
#test to_sparse_coo_grad backward
out_grad_indices
=
[[
0
,
1
],
[
0
,
1
]]
out_grad_values
=
[
2.0
,
3.0
]
out_grad
=
core
.
eager
.
sparse_coo_tensor
(
paddle
.
to_tensor
(
out_grad_indices
),
paddle
.
to_tensor
(
out_grad_values
),
out
.
shape
,
True
)
out
.
backward
(
out_grad
)
assert
np
.
array_equal
(
dense_x
.
grad
.
numpy
(),
out_grad
.
to_dense
().
numpy
())
def
test_coo_to_dense
(
self
):
with
_test_eager_guard
():
indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
values
=
[
1.0
,
2.0
,
3.0
,
4.0
,
5.0
]
sparse_x
=
core
.
eager
.
sparse_coo_tensor
(
paddle
.
to_tensor
(
indices
),
paddle
.
to_tensor
(
values
),
[
3
,
4
],
False
)
dense_tensor
=
sparse_x
.
to_dense
()
#test to_dense_grad backward
out_grad
=
[[
1.0
,
2.0
,
3.0
,
4.0
],
[
5.0
,
6.0
,
7.0
,
8.0
],
[
9.0
,
10.0
,
11.0
,
12.0
]]
dense_tensor
.
backward
(
paddle
.
to_tensor
(
out_grad
))
#mask the out_grad by sparse_x.indices()
correct_x_grad
=
[
2.0
,
4.0
,
7.0
,
9.0
,
10.0
]
assert
np
.
array_equal
(
correct_x_grad
,
sparse_x
.
grad
.
values
().
numpy
())
def
test_to_sparse_csr
(
self
):
with
_test_eager_guard
():
x
=
[[
0
,
1
,
0
,
2
],
[
0
,
0
,
3
,
0
],
[
4
,
5
,
0
,
0
]]
non_zero_
crows
=
[
0
,
2
,
3
,
5
]
non_zero_
cols
=
[
1
,
3
,
2
,
0
,
1
]
non_zero_element
s
=
[
1
,
2
,
3
,
4
,
5
]
crows
=
[
0
,
2
,
3
,
5
]
cols
=
[
1
,
3
,
2
,
0
,
1
]
value
s
=
[
1
,
2
,
3
,
4
,
5
]
dense_x
=
paddle
.
to_tensor
(
x
)
out
=
dense_x
.
to_sparse_csr
()
print
(
out
)
assert
np
.
array_equal
(
out
.
non_zero_crows
().
numpy
(),
non_zero_crows
)
assert
np
.
array_equal
(
out
.
non_zero_cols
().
numpy
(),
non_zero_cols
)
assert
np
.
array_equal
(
out
.
non_zero_elements
().
numpy
(),
non_zero_elements
)
assert
np
.
array_equal
(
out
.
crows
().
numpy
(),
crows
)
assert
np
.
array_equal
(
out
.
cols
().
numpy
(),
cols
)
assert
np
.
array_equal
(
out
.
values
().
numpy
(),
values
)
dense_tensor
=
out
.
to_dense
()
print
(
dense_tensor
)
assert
np
.
array_equal
(
dense_tensor
.
numpy
(),
x
)
def
test_coo_values_grad
(
self
):
with
_test_eager_guard
():
indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
values
=
[
1.0
,
2.0
,
3.0
,
4.0
,
5.0
]
sparse_x
=
core
.
eager
.
sparse_coo_tensor
(
paddle
.
to_tensor
(
indices
),
paddle
.
to_tensor
(
values
),
[
3
,
4
],
False
)
values_tensor
=
sparse_x
.
values
()
out_grad
=
[
2.0
,
3.0
,
5.0
,
8.0
,
9.0
]
# test coo_values_grad
values_tensor
.
backward
(
paddle
.
to_tensor
(
out_grad
))
assert
np
.
array_equal
(
out_grad
,
sparse_x
.
grad
.
values
().
numpy
())
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/to_string.py
浏览文件 @
f78cc3da
...
...
@@ -291,11 +291,11 @@ def sparse_tensor_to_string(tensor, prefix='Tensor'):
indent
=
len
(
prefix
)
+
1
if
tensor
.
is_sparse_coo
():
_template
=
"{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},
\n
{indent}{indices},
\n
{indent}{values})"
indices_tensor
=
tensor
.
non_zero_
indices
()
elements_tensor
=
tensor
.
non_zero_element
s
()
indices_tensor
=
tensor
.
indices
()
values_tensor
=
tensor
.
value
s
()
indices_data
=
'indices='
+
_format_dense_tensor
(
indices_tensor
,
indent
+
len
(
'indices='
))
values_data
=
'values='
+
_format_dense_tensor
(
element
s_tensor
,
indent
+
values_data
=
'values='
+
_format_dense_tensor
(
value
s_tensor
,
indent
+
len
(
'values='
))
return
_template
.
format
(
prefix
=
prefix
,
...
...
@@ -308,9 +308,9 @@ def sparse_tensor_to_string(tensor, prefix='Tensor'):
values
=
values_data
)
else
:
_template
=
"{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},
\n
{indent}{crows},
\n
{indent}{cols},
\n
{indent}{values})"
crows_tensor
=
tensor
.
non_zero_
crows
()
cols_tensor
=
tensor
.
non_zero_
cols
()
elements_tensor
=
tensor
.
non_zero_element
s
()
crows_tensor
=
tensor
.
crows
()
cols_tensor
=
tensor
.
cols
()
elements_tensor
=
tensor
.
value
s
()
crows_data
=
'crows='
+
_format_dense_tensor
(
crows_tensor
,
indent
+
len
(
'crows='
))
cols_data
=
'cols='
+
_format_dense_tensor
(
cols_tensor
,
indent
+
...
...
python/paddle/utils/code_gen/sparse_api.yaml
浏览文件 @
f78cc3da
...
...
@@ -7,6 +7,33 @@
intermediate
:
rulebook
backward
:
conv3d_grad
-
api
:
coo_to_dense
args
:
(Tensor x)
output
:
Tensor(out@DenseTensor)
invoke
:
to_dense_impl(x)
backward
:
coo_to_dense_grad
-
api
:
coo_values
args
:
(Tensor x)
output
:
Tensor(out@DenseTensor)
kernel
:
func
:
coo_values
layout
:
x
backward
:
coo_values_grad
-
api
:
csr_values
args
:
(Tensor x)
output
:
Tensor(out@DenseTensor)
kernel
:
func
:
csr_values
layout
:
x
-
api
:
dense_to_coo
args
:
(Tensor x, int64_t sparse_dim)
output
:
Tensor(out@SparseCooTensor)
invoke
:
to_sparse_coo_impl(x, sparse_dim)
backward
:
dense_to_coo_grad
-
api
:
relu
args
:
(Tensor x)
output
:
Tensor(out@SparseCooTensor)
...
...
python/paddle/utils/code_gen/sparse_bw_api.yaml
浏览文件 @
f78cc3da
...
...
@@ -5,6 +5,26 @@
kernel
:
func
:
sparse_conv3d_grad
-
backward_api
:
coo_to_dense_grad
forward
:
coo_to_dense(Tensor x) -> Tensor(out@DenseTensor)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad@SparseCooTensor)
kernel
:
func
:
sparse_coo_to_dense_grad
-
backward_api
:
coo_values_grad
forward
:
coo_values(Tensor x) -> Tensor(out@DenseTensor)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad@SparseCooTensor)
kernel
:
func
:
coo_values_grad
-
backward_api
:
dense_to_coo_grad
forward
:
dense_to_coo(Tensor x, int64_t sparse_dim) -> Tensor(out@SparseCooTensor)
args
:
(Tensor out_grad)
output
:
Tensor(x_grad@DenseTensor)
invoke
:
to_dense_impl(out_grad)
-
backward_api
:
sparse_relu_grad
forward
:
sparse_relu(Tensor x) -> Tensor(out@SparseCooTensor)
args
:
(Tensor x, Tensor out_grad)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录