kron_op.cc 5.8 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/phi/infermeta/binary.h"
F
Feiyu Chan 已提交
23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class KronOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
34 35 36 37 38 39 40 41 42 43
    auto data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
    return framework::OpKernelType(data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
44 45 46
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
47 48 49 50
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
F
Feiyu Chan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  }
};

class KronOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), the first operand of kron op");
    AddInput("Y", "(Tensor), the second operand of kron op");
    AddOutput("Out", "(Tensor), the output of kron op.");
    AddComment(R"DOC(
          Kron Operator.

          This operator computes the Kronecker product of two tensors, a
          composite tensor made of blocks of the second tensor scaled by the 
          first.

          This operator assumes that the rank of the two tensors, $X$ and $Y$
          are the same, if necessary prepending the smallest with ones. If the 
          shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is 
          [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is 
          [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are 
          products of elements from $X$ and $Y$.

          The equation is:
          $$
          output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
          Y[j_{0}, j_{1}, ..., j_{N}]
          $$

          where
          $$
          k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
          $$
        )DOC");
  }
};

class KronGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "kron_grad");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
100 101 102 103 104 105
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
    }
F
Feiyu Chan 已提交
106 107 108 109 110 111 112 113 114 115
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
        ctx.GetPlace());
  }
C
chentianyu03 已提交
116 117 118 119 120 121

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
122 123 124
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
C
chentianyu03 已提交
125 126 127 128 129
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
F
Feiyu Chan 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
};

template <typename T>
class KronGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("kron_grad");

    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

157 158
DECLARE_INFER_SHAPE_FUNCTOR(kron, KronInferShapeFunctor,
                            PD_INFER_META(phi::KronInferMeta));
F
Feiyu Chan 已提交
159 160
REGISTER_OPERATOR(kron, ops::KronOp, ops::KronOpMaker,
                  ops::KronGradOpMaker<paddle::framework::OpDesc>,
161 162
                  ops::KronGradOpMaker<paddle::imperative::OpBase>,
                  KronInferShapeFunctor);
F
Feiyu Chan 已提交
163
REGISTER_OPERATOR(kron_grad, ops::KronGradOp);