kron_op.cc 6.4 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

20
#include "paddle/fluid/framework/op_registry.h"
F
Feiyu Chan 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace paddle {
namespace operators {

class KronOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "kron");

    auto dim_x = ctx->GetInputDim("X");
    auto dim_y = ctx->GetInputDim("Y");
    auto rank_x = dim_x.size();
    auto rank_y = dim_y.size();
    auto rank = (rank_x > rank_y) ? rank_x : rank_y;

    std::vector<int64_t> dim_out;
    dim_out.reserve(rank);
    for (int i = 0; i < rank; i++) {
      int64_t dim_xi = (i < rank - rank_x) ? 1 : dim_x.at(i - (rank - rank_x));
      int64_t dim_yi = (i < rank - rank_y) ? 1 : dim_y.at(i - (rank - rank_y));
      dim_out.push_back(dim_xi == -1 || dim_yi == -1 ? -1 : dim_xi * dim_yi);
    }
47
    ctx->SetOutputDim("Out", phi::make_ddim(dim_out));
F
Feiyu Chan 已提交
48 49 50 51 52
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
53 54 55 56 57 58 59 60 61 62
    auto data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
    return framework::OpKernelType(data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
63 64 65
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
66 67 68 69
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
F
Feiyu Chan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  }
};

class KronOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), the first operand of kron op");
    AddInput("Y", "(Tensor), the second operand of kron op");
    AddOutput("Out", "(Tensor), the output of kron op.");
    AddComment(R"DOC(
          Kron Operator.

          This operator computes the Kronecker product of two tensors, a
          composite tensor made of blocks of the second tensor scaled by the 
          first.

          This operator assumes that the rank of the two tensors, $X$ and $Y$
          are the same, if necessary prepending the smallest with ones. If the 
          shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is 
          [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is 
          [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are 
          products of elements from $X$ and $Y$.

          The equation is:
          $$
          output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
          Y[j_{0}, j_{1}, ..., j_{N}]
          $$

          where
          $$
          k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
          $$
        )DOC");
  }
};

class KronGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "kron_grad");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
119 120 121 122 123 124
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
    }
F
Feiyu Chan 已提交
125 126 127 128 129 130 131 132 133 134
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
        ctx.GetPlace());
  }
C
chentianyu03 已提交
135 136 137 138 139 140

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
141 142 143
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
C
chentianyu03 已提交
144 145 146 147 148
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
F
Feiyu Chan 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
};

template <typename T>
class KronGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("kron_grad");

    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(kron, ops::KronOp, ops::KronOpMaker,
                  ops::KronGradOpMaker<paddle::framework::OpDesc>,
                  ops::KronGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(kron_grad, ops::KronGradOp);