kron_op.cc 6.3 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/operators/kron_op.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

class KronOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "kron");

    auto dim_x = ctx->GetInputDim("X");
    auto dim_y = ctx->GetInputDim("Y");
    auto rank_x = dim_x.size();
    auto rank_y = dim_y.size();
    auto rank = (rank_x > rank_y) ? rank_x : rank_y;

    std::vector<int64_t> dim_out;
    dim_out.reserve(rank);
    for (int i = 0; i < rank; i++) {
      int64_t dim_xi = (i < rank - rank_x) ? 1 : dim_x.at(i - (rank - rank_x));
      int64_t dim_yi = (i < rank - rank_y) ? 1 : dim_y.at(i - (rank - rank_y));
      dim_out.push_back(dim_xi == -1 || dim_yi == -1 ? -1 : dim_xi * dim_yi);
    }
    ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class KronOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), the first operand of kron op");
    AddInput("Y", "(Tensor), the second operand of kron op");
    AddOutput("Out", "(Tensor), the output of kron op.");
    AddComment(R"DOC(
          Kron Operator.

          This operator computes the Kronecker product of two tensors, a
          composite tensor made of blocks of the second tensor scaled by the 
          first.

          This operator assumes that the rank of the two tensors, $X$ and $Y$
          are the same, if necessary prepending the smallest with ones. If the 
          shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is 
          [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is 
          [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are 
          products of elements from $X$ and $Y$.

          The equation is:
          $$
          output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
          Y[j_{0}, j_{1}, ..., j_{N}]
          $$

          where
          $$
          k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
          $$
        )DOC");
  }
};

class KronGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "kron_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "kron_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Y")), "Output",
                   framework::GradVarName("Y"), "kron_grad");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
    ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
    ctx->ShareLoD("Y", /*->*/ y_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
        ctx.GetPlace());
  }
};

template <typename T>
class KronGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("kron_grad");

    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(kron, ops::KronOp, ops::KronOpMaker,
                  ops::KronGradOpMaker<paddle::framework::OpDesc>,
                  ops::KronGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
    kron, ops::KronKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KronKernel<paddle::platform::CPUDeviceContext, double>,
    ops::KronKernel<paddle::platform::CPUDeviceContext,
                    paddle::platform::float16>,
    ops::KronKernel<paddle::platform::CPUDeviceContext, int>,
    ops::KronKernel<paddle::platform::CPUDeviceContext, int64_t>);

REGISTER_OPERATOR(kron_grad, ops::KronGradOp);
REGISTER_OP_CPU_KERNEL(
    kron_grad, ops::KronGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KronGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::KronGradKernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::float16>,
    ops::KronGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::KronGradKernel<paddle::platform::CPUDeviceContext, int64_t>);