logic.py 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
Z
zhulei 已提交
19
from ..framework import VarBase as Tensor
P
update  
phlrain 已提交
20
from paddle.fluid.framework import _in_eager_mode
21

22
# TODO: define logic functions of a tensor  
23 24 25 26 27
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401
Z
zhiboniu 已提交
28
import paddle
W
wanghuancoder 已提交
29
from paddle import _C_ops
30
from paddle.tensor.creation import full
31

32 33
__all__ = []

34

W
wawltor 已提交
35
def equal_all(x, y, name=None):
36 37 38
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
39
    **NOTICE**: The output of this OP has no gradient.
40 41

    Args:
42 43
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
44 45
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
46 47

    Returns:
W
wawltor 已提交
48
        Tensor: output Tensor, data type is bool, value is [False] or [True].
49 50 51 52 53

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
54

55 56 57
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
58
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
59
          print(result1) # result1 = [True ]
W
wawltor 已提交
60
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
61
          print(result2) # result2 = [False ]
62
    """
Z
zhiboniu 已提交
63
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
64
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
65 66

    helper = LayerHelper("equal_all", **locals())
67 68
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
69 70
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
71
    return out
Z
Zhen Wang 已提交
72 73 74


@templatedoc()
75
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
76 77 78 79
    """
    ${comment}

    Args:
80 81
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
82 83
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
84 85 86
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
87 88

    Returns:
89 90 91 92 93 94 95 96
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
97 98 99 100 101 102

    Examples:
        .. code-block:: python

          import paddle

103 104
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
105
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
106
                                  equal_nan=False, name="ignore_nan")
107 108 109
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
110
                                      equal_nan=True, name="equal_nan")
111 112 113
          np_result2 = result2.numpy()
          # [False]

114 115
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
116 117 118 119 120 121 122 123
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
124 125
    """

Z
zhiboniu 已提交
126
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
127 128 129
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
130 131 132

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
133 134 135 136 137 138 139
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

140
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
141
    outputs = {'Out': out}
142
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
143 144 145 146
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
147 148


W
wawltor 已提交
149 150
@templatedoc()
def equal(x, y, name=None):
151
    """
S
swtkiwi 已提交
152

153
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
154

W
wawltor 已提交
155
    **NOTICE**: The output of this OP has no gradient.
156 157

    Args:
158 159
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
160 161 162 163
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
164
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
165 166 167 168 169
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
170 171
          import paddle

172 173
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
174
          result1 = paddle.equal(x, y)
N
Noel 已提交
175
          print(result1)  # result1 = [True False False]
176
    """
177 178 179 180 181 182 183
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

Z
zhiboniu 已提交
184
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
185
        return _C_ops.equal(x, y)
186

187 188 189 190
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "equal")
191 192 193 194 195 196 197
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
198
    return out
199

W
wawltor 已提交
200 201 202 203 204

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
205

W
wawltor 已提交
206 207 208
    **NOTICE**: The output of this OP has no gradient.

    Args:
209 210
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
211 212 213 214 215 216 217
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
218

W
wawltor 已提交
219 220
            import paddle

221 222
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
223
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
224
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
225
    """
Z
zhiboniu 已提交
226
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
227
        return _C_ops.greater_equal(x, y)
228

229 230
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
231
                             "greater_equal")
232 233
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
234 235 236 237 238 239 240 241 242 243
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
244 245 246 247 248 249 250
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
251

W
wawltor 已提交
252 253 254
    **NOTICE**: The output of this OP has no gradient.

    Args:
255 256
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
257 258 259 260 261 262 263
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
264

W
wawltor 已提交
265 266
            import paddle

267 268
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
269
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
270
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
271
    """
Z
zhiboniu 已提交
272
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
273
        return _C_ops.greater_than(x, y)
274

275 276
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
277
                             "greater_than")
278 279
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
280 281 282 283 284 285 286 287 288 289
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
290 291 292 293 294 295 296
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
297

W
wawltor 已提交
298 299 300
    **NOTICE**: The output of this OP has no gradient.

    Args:
301 302
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
303 304 305 306 307 308 309 310
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
311

W
wawltor 已提交
312 313
            import paddle

314 315
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
316
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
317
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
318
    """
Z
zhiboniu 已提交
319
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
320
        return _C_ops.less_equal(x, y)
321

322 323 324 325
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
326 327 328 329 330 331 332
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
333 334 335 336 337 338 339
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
340

W
wawltor 已提交
341 342 343
    **NOTICE**: The output of this OP has no gradient.

    Args:
344 345
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
346 347 348 349 350 351 352 353
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
354

W
wawltor 已提交
355 356
            import paddle

357 358
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
359
            result1 = paddle.less_than(x, y)
N
Noel 已提交
360
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
361
    """
Z
zhiboniu 已提交
362
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
363
        return _C_ops.less_than(x, y)
364

365 366 367 368
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_than")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_than")
369 370 371 372 373 374 375
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
376 377 378 379 380 381 382
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
383
    
W
wawltor 已提交
384 385 386
    **NOTICE**: The output of this OP has no gradient.

    Args:
387 388
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
389 390 391 392 393 394 395 396
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
397

W
wawltor 已提交
398 399
            import paddle

400 401
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
402
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
403
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
404
    """
Z
zhiboniu 已提交
405
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
406
        return _C_ops.not_equal(x, y)
407

408 409 410 411
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
412 413 414 415 416 417 418
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
419
    return out
Z
zhulei 已提交
420 421 422 423 424


def is_tensor(x):
    """

C
chentianyu03 已提交
425
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
426 427 428 429 430

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
431
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
C
chentianyu03 已提交
447
    return isinstance(x, Tensor)
448 449 450


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
451
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
452
        op = getattr(_C_ops, op_name)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
P
phlrain 已提交
582 583
    if _in_eager_mode() and out == None:
        return _C_op.final_state_bitwise_not(x)
584 585
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

Z
zhiboniu 已提交
640
    if paddle.in_dynamic_mode():
A
andyjpaddle 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out