cos_sim_op.h 9.6 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
18
#include "paddle/operators/elementwise_op_function.h"
X
Xinghai Sun 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Q
qijun 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
30

C
chengduoZH 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
template <typename IT1, typename IT2, typename Callback>
static void ForEachZip(IT1 begin1, IT1 last1, IT2 begin2, Callback callback) {
  // This method could be implemented in CUDA
  for (; begin1 < last1; ++begin1, ++begin2) {
    callback(*begin1, *begin2);
  }
}

template <typename T, bool same_row>
struct CosSimFunctor {
  CosSimFunctor(const T* x, const T* y, T* x_norm, T* y_norm, T* z, int cols)
      : x_norm_(x_norm),
        y_norm_(y_norm),
        x_(x),
        y_(y),
        z_(z),
        cols_(static_cast<size_t>(cols)) {}

  inline void operator()(T& x_norm, T& y_norm) const {
    size_t x_offset = &x_norm - x_norm_;
    size_t y_offset = &y_norm - y_norm_;

    auto* x = x_ + cols_ * x_offset;

    T xx = 0, xy = 0;
C
chengduoZH 已提交
56
    T yy = 0;
C
chengduoZH 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    if (same_row) {
      auto* y = y_ + cols_ * y_offset;
      for (size_t i = 0; i < cols_; ++i) {
        xx += x[i] * x[i];
        yy += y[i] * y[i];
        xy += x[i] * y[i];
      }
      xx = sqrt(xx);
      yy = sqrt(yy);
      x_norm_[x_offset] = xx;
      y_norm_[y_offset] = yy;
      z_[x_offset] = xy / (xx * yy);
    } else {
      auto* y = y_;
      //      if (yy == -1) {
      //        yy = 0;
      //        for (size_t i = 0; i < cols_; ++i) {
      //          yy += y[i] * y[i];
      //        }
      //        y_norm[0] = sqrt(yy);
      //      }
      for (size_t i = 0; i < cols_; ++i) {
        xx += x[i] * x[i];
        yy += y[i] * y[i];  // only need
        xy += x[i] * y[i];
      }
      xx = sqrt(xx);
      yy = sqrt(yy);
      x_norm_[x_offset] = xx;
      y_norm_[0] = yy;
      z_[x_offset] = xy / (xx * yy);
C
chengduoZH 已提交
88 89
    }
  }
C
chengduoZH 已提交
90 91 92 93 94 95 96 97

  T* x_norm_;
  T* y_norm_;
  const T* x_;
  const T* y_;
  T* z_;
  const size_t cols_;
};
C
chengduoZH 已提交
98

Q
QI JUN 已提交
99
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
100
class CosSimKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
101 102
 public:
  void Compute(const framework::ExecutionContext& context) const override {
103 104 105 106 107 108 109 110 111
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* out_z = context.Output<Tensor>("Out");
    auto* out_x_norm = context.Output<Tensor>("XNorm");
    auto* out_y_norm = context.Output<Tensor>("YNorm");
    out_z->mutable_data<T>(context.GetPlace());
    out_x_norm->mutable_data<T>(context.GetPlace());
    out_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
112

113 114
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
C
chengduoZH 已提交
115 116

    int cols = framework::product(in_x->dims()) / rows_x;
C
chengduoZH 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130

    if (rows_x == rows_y) {
      CosSimFunctor<T, true> functor(
          in_x->data<T>(), in_y->data<T>(), out_x_norm->data<T>(),
          out_y_norm->data<T>(), out_z->data<T>(), cols);
      ForEachZip(out_x_norm->data<T>(), out_x_norm->data<T>() + rows_x,
                 out_y_norm->data<T>(), functor);
    } else {
      CosSimFunctor<T, false> functor(
          in_x->data<T>(), in_y->data<T>(), out_x_norm->data<T>(),
          out_y_norm->data<T>(), out_z->data<T>(), cols);
      ForEachZip(out_x_norm->data<T>(), out_x_norm->data<T>() + rows_x,
                 out_y_norm->data<T>(), functor);
    }
X
Xinghai Sun 已提交
131 132 133
  }
};

C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
template <typename T>
struct CosSimGradFunctor {
  CosSimGradFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y,
                    const T* z, const T* dz, T* dx, int cols)
      : x_norm_(x_norm),
        y_norm_(y_norm),
        x_(x),
        y_(y),
        z_(z),
        dz_(dz),
        dx_(dx),
        cols_(static_cast<size_t>(cols)) {}

  void operator()(const T& x_norm, const T& y_norm) const {
    size_t x_offset = &x_norm - x_norm_;
    size_t y_offset = &y_norm - y_norm_;

    auto x_norm_square = x_norm_[x_offset] * x_norm_[x_offset];
    //    auto y_norm_square = y_norm_[y_offset] * y_norm_[y_offset];
    auto xy_norm_prod = x_norm_[x_offset] * y_norm_[y_offset];
    auto dz = dz_[x_offset];

    auto* dx = dx_ + cols_ * x_offset;
    auto* x = x_ + cols_ * x_offset;
    auto* y = y_ + cols_ * y_offset;
    auto z = z_[x_offset];

    for (size_t i = 0; i < cols_; ++i) {
      dx[i] = dz * (y[i] / xy_norm_prod - z * x[i] / x_norm_square);
    }
C
chengduoZH 已提交
164
  }
C
chengduoZH 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

  const T* x_norm_;
  const T* y_norm_;
  const T* x_;
  const T* y_;
  const T* z_;
  const T* dz_;
  T* dx_;
  const size_t cols_;
};

template <typename T>
struct CosSimDxFunctor {
  CosSimDxFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y,
                  const T* z, const T* dz, T* dx, int cols)
      : x_norm_(x_norm),
        y_norm_(y_norm),
        x_(x),
        y_(y),
        z_(z),
        dz_(dz),
        dx_(dx),
        cols_(static_cast<size_t>(cols)) {}

  void operator()(const T& x_norm, const T& y_norm) const {
    size_t x_offset = &x_norm - x_norm_;

    auto x_norm_square = x_norm_[x_offset] * x_norm_[x_offset];
    auto xy_norm_prod = x_norm_[x_offset] * y_norm_[0];
    auto dz = dz_[x_offset];
    auto z = z_[x_offset];

    auto* dx = dx_ + cols_ * x_offset;
    auto* x = x_ + cols_ * x_offset;

    for (size_t i = 0; i < cols_; ++i) {
      dx[i] = dz * (y_[i] / xy_norm_prod - z * x[i] / x_norm_square);
    }
  }

  const T* x_norm_;
  const T* y_norm_;
  const T* x_;
  const T* y_;
  const T* z_;
  const T* dz_;
  T* dx_;
  const size_t cols_;
};

template <typename T>
struct CosSimDyFunctor {
  CosSimDyFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y,
                  const T* z, const T* dz, T* dy, int cols)
      : x_norm_(x_norm),
        y_norm_(y_norm),
        x_(x),
        y_(y),
        z_(z),
        dz_(dz),
        dy_(dy),
        cols_(static_cast<size_t>(cols)) {}

  void operator()(const T& x_norm, const T& y_norm) const {
    size_t x_offset = &x_norm - x_norm_;

    auto y_norm_square = y_norm_[0] * y_norm_[0];
    auto xy_norm_prod = x_norm_[x_offset] * y_norm_[0];
    auto dz = dz_[x_offset];
    auto z = z_[x_offset];
    auto* x = x_ + cols_ * x_offset;

    for (size_t i = 0; i < cols_; ++i) {
      dy_[i] += dz * (x[i] / xy_norm_prod - z * y_[i] / y_norm_square);
    }
  }

  const T* x_norm_;
  const T* y_norm_;
  const T* x_;
  const T* y_;
  const T* z_;
  const T* dz_;
  T* dy_;
  const size_t cols_;
};
C
chengduoZH 已提交
251

Q
QI JUN 已提交
252
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
253
class CosSimGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
254 255
 public:
  void Compute(const framework::ExecutionContext& context) const override {
256 257 258 259 260 261 262 263 264
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* in_z = context.Input<Tensor>("Out");
    auto* in_x_norm = context.Input<Tensor>("XNorm");
    auto* in_y_norm = context.Input<Tensor>("YNorm");
    auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
265

266
    // compute gradident
267 268 269
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
C
chengduoZH 已提交
270

C
chengduoZH 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    if (rows_x == rows_y) {
      if (out_grad_x) {
        CosSimGradFunctor<T> functor(
            in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
            in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
            out_grad_x->mutable_data<T>(context.GetPlace()), cols);
        ForEachZip(in_x_norm->data<T>(), in_x_norm->data<T>() + rows_x,
                   in_y_norm->data<T>(), functor);
      }
      if (out_grad_y) {
        CosSimGradFunctor<T> functor(
            in_y_norm->data<T>(), in_x_norm->data<T>(), in_y->data<T>(),
            in_x->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
            out_grad_y->mutable_data<T>(context.GetPlace()), cols);
        ForEachZip(in_y_norm->data<T>(), in_y_norm->data<T>() + rows_x,
                   in_x_norm->data<T>(), functor);
      }
    } else {
      if (out_grad_x) {
        CosSimDxFunctor<T> functor(
            in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
            in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
            out_grad_x->mutable_data<T>(context.GetPlace()), cols);
        ForEachZip(in_x_norm->data<T>(), in_x_norm->data<T>() + rows_x,
                   in_y_norm->data<T>(), functor);
      }
      if (out_grad_y) {
        CosSimDyFunctor<T> functor(
            in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
            in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
            out_grad_y->mutable_data<T>(context.GetPlace()), cols);
        ForEachZip(in_x_norm->data<T>(), in_x_norm->data<T>() + rows_x,
                   in_y_norm->data<T>(), functor);
      }
305
    }
X
Xinghai Sun 已提交
306 307 308 309 310
  }
};

}  // namespace operators
}  // namespace paddle