test_inference_nlp.cc 8.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLML
#include <mkl_service.h>
#include <omp.h>
#endif
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28
DEFINE_string(model_path, "", "Directory of the inference model.");
DEFINE_string(data_file, "", "File of input index data.");
T
tensor-tang 已提交
29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
32 33
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
34
inline double GetCurrentMs() {
T
tensor-tang 已提交
35 36 37 38 39
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
40 41 42 43 44 45 46 47
// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

T
tensor-tang 已提交
48 49
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
50 51
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
52 53 54 55
  if (filename.empty()) {
    return DummyData(out);
  }

T
tensor-tang 已提交
56
  size_t sz = 0;
T
tensor-tang 已提交
57 58
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
59 60
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
61 62 63
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
64 65 66
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
67
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
68
      // Synced with NLP guys, they will ignore input larger then 1024
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
80
  }
T
tensor-tang 已提交
81 82 83
  return sz;
}

T
tensor-tang 已提交
84 85
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
103 104 105 106 107 108 109
void ThreadRunInfer(
    const int tid, paddle::framework::Executor* executor,
    paddle::framework::Scope* scope,
    const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
  auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
      new paddle::framework::ProgramDesc(*inference_program));
T
tensor-tang 已提交
110 111
  auto& sub_scope = scope->NewScope();

T
tensor-tang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  std::string feed_holder_name = "feed_" + paddle::string::to_string(tid);
  std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid);
  copy_program->SetFeedHolderName(feed_holder_name);
  copy_program->SetFetchHolderName(fetch_holder_name);

  const std::vector<std::string>& feed_target_names =
      copy_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      copy_program->GetFetchTargetNames();

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
131
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
132 133
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
T
tensor-tang 已提交
134
    executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
135 136
                  true /*create_local_scope*/, true /*create_vars*/,
                  feed_holder_name, fetch_holder_name);
T
tensor-tang 已提交
137
  }
T
tensor-tang 已提交
138
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
139
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
140 141 142 143 144
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
145
TEST(inference, nlp) {
T
tensor-tang 已提交
146 147
  if (FLAGS_model_path.empty()) {
    LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model";
T
tensor-tang 已提交
148
  }
T
tensor-tang 已提交
149 150
  if (FLAGS_data_file.empty()) {
    LOG(WARNING) << "No data file provided, will use dummy data!"
T
tensor-tang 已提交
151
                 << "Note: if you use nlp model, please provide data file.";
T
tensor-tang 已提交
152
  }
T
tensor-tang 已提交
153 154
  LOG(INFO) << "Model Path: " << FLAGS_model_path;
  LOG(INFO) << "Data File: " << FLAGS_data_file;
T
tensor-tang 已提交
155

T
tensor-tang 已提交
156
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
157
  size_t num_total_words = LoadData(&datasets, FLAGS_data_file);
T
tensor-tang 已提交
158
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
159 160
  LOG(INFO) << "Total number of words: " << num_total_words;

T
tensor-tang 已提交
161
  const bool model_combined = false;
T
tensor-tang 已提交
162 163 164 165
  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
T
tensor-tang 已提交
166 167
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
168 169 170

  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
T
tensor-tang 已提交
171
  inference_program =
T
tensor-tang 已提交
172
      InitProgram(&executor, scope.get(), FLAGS_model_path, model_combined);
T
tensor-tang 已提交
173 174
  if (FLAGS_use_mkldnn) {
    EnableMKLDNN(inference_program);
T
tensor-tang 已提交
175
  }
T
tensor-tang 已提交
176

T
tensor-tang 已提交
177
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
178
  // only use 1 thread number per std::thread
T
tensor-tang 已提交
179 180 181 182 183 184
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
185
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
186
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
187
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
188
    std::vector<std::unique_ptr<std::thread>> threads;
189
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
190
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
191 192 193
      threads.emplace_back(
          new std::thread(ThreadRunInfer, i, &executor, scope.get(),
                          std::ref(inference_program), std::ref(jobs)));
T
tensor-tang 已提交
194 195 196 197
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
198
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
199 200
  } else {
    if (FLAGS_prepare_vars) {
T
tensor-tang 已提交
201
      executor.CreateVariables(*inference_program, scope.get(), 0);
T
tensor-tang 已提交
202
    }
T
tensor-tang 已提交
203
    // always prepare context
T
tensor-tang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);

    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
221 222
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
223 224
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
225
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
226 227
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
228
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
229 230 231
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
232
  }
T
tensor-tang 已提交
233 234
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
235
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
236
}