test_inference_nlp.cc 8.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLML
#include <mkl_service.h>
#include <omp.h>
#endif
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28
DEFINE_string(modelpath, "", "Directory of the inference model.");
DEFINE_string(datafile, "", "File of input index data.");
T
tensor-tang 已提交
29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
32 33
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
34
inline double GetCurrentMs() {
T
tensor-tang 已提交
35 36 37 38 39
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
40 41 42 43 44 45 46 47
// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

T
tensor-tang 已提交
48 49
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
50 51
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
52 53 54 55
  if (filename.empty()) {
    return DummyData(out);
  }

T
tensor-tang 已提交
56
  size_t sz = 0;
T
tensor-tang 已提交
57 58
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
59 60
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
61 62 63
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
64 65 66
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
67
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
68 69 70 71 72 73 74 75 76 77 78
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
79
  }
T
tensor-tang 已提交
80 81 82
  return sz;
}

T
tensor-tang 已提交
83 84
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
102 103 104 105 106 107 108
void ThreadRunInfer(
    const int tid, paddle::framework::Executor* executor,
    paddle::framework::Scope* scope,
    const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
  auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
      new paddle::framework::ProgramDesc(*inference_program));
T
tensor-tang 已提交
109 110
  auto& sub_scope = scope->NewScope();

T
tensor-tang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  std::string feed_holder_name = "feed_" + paddle::string::to_string(tid);
  std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid);
  copy_program->SetFeedHolderName(feed_holder_name);
  copy_program->SetFetchHolderName(fetch_holder_name);

  const std::vector<std::string>& feed_target_names =
      copy_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      copy_program->GetFetchTargetNames();

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
130
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
131 132
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
T
tensor-tang 已提交
133
    executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
134 135
                  true /*create_local_scope*/, true /*create_vars*/,
                  feed_holder_name, fetch_holder_name);
T
tensor-tang 已提交
136
  }
T
tensor-tang 已提交
137
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
138
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
139 140 141 142 143
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
144
TEST(inference, nlp) {
T
tensor-tang 已提交
145 146 147 148 149 150
  if (FLAGS_modelpath.empty()) {
    LOG(FATAL) << "Usage: ./example --modelpath=path/to/your/model";
  }
  if (FLAGS_datafile.empty()) {
    LOG(WARNING) << " Not data file provided, will use dummy data!"
                 << "Note: if you use nlp model, please provide data file.";
T
tensor-tang 已提交
151
  }
T
tensor-tang 已提交
152 153
  LOG(INFO) << "Model Path: " << FLAGS_modelpath;
  LOG(INFO) << "Data File: " << FLAGS_datafile;
T
tensor-tang 已提交
154

T
tensor-tang 已提交
155
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
156 157
  size_t num_total_words = LoadData(&datasets, FLAGS_datafile);
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
158 159
  LOG(INFO) << "Total number of words: " << num_total_words;

T
tensor-tang 已提交
160
  const bool model_combined = false;
T
tensor-tang 已提交
161 162 163 164
  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
T
tensor-tang 已提交
165 166
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
167 168 169

  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
T
tensor-tang 已提交
170
  inference_program =
T
tensor-tang 已提交
171
      InitProgram(&executor, scope.get(), FLAGS_modelpath, model_combined);
T
tensor-tang 已提交
172 173
  if (FLAGS_use_mkldnn) {
    EnableMKLDNN(inference_program);
T
tensor-tang 已提交
174
  }
T
tensor-tang 已提交
175

T
tensor-tang 已提交
176
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
177
  // only use 1 thread number per std::thread
T
tensor-tang 已提交
178 179 180 181 182 183
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
184
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
185
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
186
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
187
    std::vector<std::unique_ptr<std::thread>> threads;
188
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
189
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
190 191 192
      threads.emplace_back(
          new std::thread(ThreadRunInfer, i, &executor, scope.get(),
                          std::ref(inference_program), std::ref(jobs)));
T
tensor-tang 已提交
193 194 195 196
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
197
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
198 199
  } else {
    if (FLAGS_prepare_vars) {
T
tensor-tang 已提交
200
      executor.CreateVariables(*inference_program, scope.get(), 0);
T
tensor-tang 已提交
201
    }
T
tensor-tang 已提交
202
    // always prepare context
T
tensor-tang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);

    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
220 221
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
222 223
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
224
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
225 226
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
227
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
228 229 230
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
231
  }
T
tensor-tang 已提交
232 233
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
234
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
235
}