test_inference_nlp.cc 7.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17 18 19 20
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
T
tensor-tang 已提交
21
#include <thread>  // NOLINT
T
tensor-tang 已提交
22
#include <vector>
T
tensor-tang 已提交
23 24 25 26 27
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");
T
tensor-tang 已提交
28 29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
DEFINE_bool(prepare_context, true, "Prepare Context before executor");
T
tensor-tang 已提交
32

T
tensor-tang 已提交
33 34
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
35 36 37 38 39 40
inline double get_current_ms() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
41 42 43
// return size of total words
size_t read_datasets(std::vector<paddle::framework::LoDTensor>* out,
                     const std::string& filename) {
T
tensor-tang 已提交
44
  using namespace std;  // NOLINT
T
tensor-tang 已提交
45
  size_t sz = 0;
T
tensor-tang 已提交
46 47 48 49 50 51 52 53 54 55
  fstream fin(filename);
  string line;
  out->clear();
  while (getline(fin, line)) {
    istringstream iss(line);
    vector<int64_t> ids;
    string field;
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
56
    if (ids.size() >= 1024 ) {
T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
68
  }
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  return sz;
}

void test_multi_threads() {
  /*
    size_t jobs_per_thread = std::min(inputdatas.size() / FLAGS_num_threads,
    inputdatas.size());
    std::vector<size_t> workers(FLAGS_num_threads, jobs_per_thread);
    workers[FLAGS_num_threads - 1] += inputdatas.size() % FLAGS_num_threads;

    std::vector<std::unique_ptr<std::thread>> infer_threads;

    for (size_t i = 0; i < workers.size(); ++i) {
      infer_threads.emplace_back(new std::thread([&, i]() {
        size_t start = i * jobs_per_thread;
        for (size_t j = start; j < start + workers[i]; ++j ) {
          // 0. Call `paddle::framework::InitDevices()` initialize all the
    devices
          // In unittests, this is done in paddle/testing/paddle_gtest_main.cc
          paddle::framework::LoDTensor words;
          auto& srcdata = inputdatas[j];
          paddle::framework::LoD lod{{0, srcdata.size()}};
          words.set_lod(lod);
          int64_t* pdata = words.mutable_data<int64_t>(
              {static_cast<int64_t>(srcdata.size()), 1},
              paddle::platform::CPUPlace());
          memcpy(pdata, srcdata.data(), words.numel() * sizeof(int64_t));

          LOG(INFO) << "thread id: " << i << ", words size:" << words.numel();
          std::vector<paddle::framework::LoDTensor*> cpu_feeds;
          cpu_feeds.push_back(&words);

          paddle::framework::LoDTensor output1;
          std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
          cpu_fetchs1.push_back(&output1);

          // Run inference on CPU
          if (FLAGS_prepare_vars) {
            if (FLAGS_prepare_context) {
              TestInference<paddle::platform::CPUPlace, false, true>(
                  dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                  FLAGS_use_mkldnn);
            } else {
              TestInference<paddle::platform::CPUPlace, false, false>(
                  dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                  FLAGS_use_mkldnn);
            }
          } else {
            if (FLAGS_prepare_context) {
              TestInference<paddle::platform::CPUPlace, true, true>(
                  dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                  FLAGS_use_mkldnn);
            } else {
              TestInference<paddle::platform::CPUPlace, true, false>(
                  dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                  FLAGS_use_mkldnn);
            }
          }
          //LOG(INFO) << output1.lod();
          //LOG(INFO) << output1.dims();
        }
      }));
    }
    auto start_ms = get_current_ms();
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      infer_threads[i]->join();
    }
    auto stop_ms = get_current_ms();
    LOG(INFO) << "total: " << stop_ms - start_ms << " ms";*/
T
tensor-tang 已提交
138 139
}

T
tensor-tang 已提交
140
TEST(inference, nlp) {
T
tensor-tang 已提交
141 142 143 144 145
  if (FLAGS_dirname.empty()) {
    LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
  }
  LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;
T
tensor-tang 已提交
146

T
tensor-tang 已提交
147 148 149 150 151 152
  std::vector<paddle::framework::LoDTensor> datasets;
  size_t num_total_words =
      read_datasets(&datasets, "/home/tangjian/paddle-tj/out.ids.txt");
  LOG(INFO) << "Number of dataset samples(seq len<1024): " << datasets.size();
  LOG(INFO) << "Total number of words: " << num_total_words;

T
tensor-tang 已提交
153
  const bool model_combined = false;
T
tensor-tang 已提交
154 155 156 157 158 159 160 161 162 163 164 165

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  inference_program = InitProgram(&executor, scope, dirname, model_combined);
  if (FLAGS_use_mkldnn) {
    EnableMKLDNN(inference_program);
T
tensor-tang 已提交
166
  }
T
tensor-tang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

  if (FLAGS_num_threads > 1) {
    test_multi_threads();
  } else {
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope, 0);
    }
    // always prepare context and burning first time
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);

    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

    // for data and run
    auto start_ms = get_current_ms();
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
    auto stop_ms = get_current_ms();
    LOG(INFO) << "Total infer time: " << (stop_ms - start_ms) / 1000.0 / 60
              << " min, avg time per seq: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
203 204 205 206 207 208 209 210
//    {  // just for test
//      auto* scope = new paddle::framework::Scope();
//      paddle::framework::LoDTensor outtensor;
//      TestInference<paddle::platform::CPUPlace, false, true>(
//          dirname, {&(datasets[0])}, {&outtensor}, FLAGS_repeat, model_combined,
//          false);
//      delete scope;
//    }
T
tensor-tang 已提交
211
  }
T
tensor-tang 已提交
212
  delete scope;
T
tensor-tang 已提交
213
}