control_flow.py 66.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
24
import warnings
D
dzhwinter 已提交
25

Q
QI JUN 已提交
26
__all__ = [
Y
ying 已提交
27
    'While',
28
    'Switch',
Y
ying 已提交
29 30 31 32
    'increment',
    'array_write',
    'create_array',
    'less_than',
33
    'equal',
Y
ying 已提交
34 35 36 37 38 39 40 41
    'array_read',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
42
    'is_empty',
D
dzhwinter 已提交
43 44
]

Y
Yu Yang 已提交
45

46
def split_lod_tensor(input, mask, level=0):
47 48 49 50
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
51 52
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
53 54 55 56 57

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
58
        level(int): The specific lod level to split.
59 60

    Returns:
Q
qiaolongfei 已提交
61 62 63 64
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
65 66 67 68

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
69
          x = fluid.layers.data(name='x', shape=[1])
70 71
          x.persistable = True

Q
qiaolongfei 已提交
72
          y = fluid.layers.data(name='y', shape=[1])
73 74
          y.persistable = True

Q
qiaolongfei 已提交
75
          out_true, out_false = fluid.layers.split_lod_tensor(
76
                input=x, mask=y, level=level)
77

78
    """
79
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
80 81
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
82 83 84 85 86 87 88 89 90 91 92 93
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


94
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
95 96 97 98 99
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
100 101 102
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
103 104 105 106 107 108 109

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
110
        level(int): The specific lod level to merge.
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
130
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
131
    out = helper.create_tmp_variable(dtype=in_true.dtype)
132 133 134 135 136 137 138 139 140 141 142
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
143 144 145 146 147 148 149
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
150 151
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
162 163 164 165 166 167 168 169 170
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
171
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
172 173
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
174 175

    Returns:
Y
yangyaming 已提交
176
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
177

Y
Yan Chunwei 已提交
178

Y
Yan Chunwei 已提交
179
    Examples:
Y
Yan Chunwei 已提交
180

Y
Yan Chunwei 已提交
181 182
        .. code-block:: python

Y
Yan Chunwei 已提交
183 184 185
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
186 187
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
188
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
189 190
    helper.append_op(
        type='print',
Y
yangyaming 已提交
191
        inputs={'In': input},
Y
Yan Chunwei 已提交
192 193 194 195 196 197 198 199
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
200 201 202
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
203 204 205
    return out


Y
Yu Yang 已提交
206 207
class BlockGuard(object):
    """
208 209 210 211
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
212 213
    """

214 215
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
216
            raise TypeError("BlockGuard takes a program")
217
        self.main_program = main_program
Y
Yu Yang 已提交
218 219

    def __enter__(self):
220
        self.main_program.create_block()
Y
Yu Yang 已提交
221 222

    def __exit__(self, exc_type, exc_val, exc_tb):
223
        self.main_program.rollback()
Y
Yu Yang 已提交
224 225 226 227 228
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
229
class ParallelDo(object):
230
    """
L
Luo Tao 已提交
231 232
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
233
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
249
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
    
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
281 282
    """

Y
Yang Yang 已提交
283
    def __init__(self, places, use_nccl=False, name=None):
284 285 286
        warnings.warn(
            "API ParallelDo is deprecated since 0.15.0. Please use ParallelExecutor instead.",
            Warning)
Y
Yang Yang 已提交
287 288 289 290 291
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
292
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
316
        return var
Y
Yang Yang 已提交
317 318 319 320 321 322 323 324 325 326

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
327
        params = list()
Y
Yang Yang 已提交
328 329 330 331 332 333 334 335
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
336 337 338 339 340

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
341
        params = list(set(params))
Y
Yang Yang 已提交
342 343 344

        return [parent_block.var(name) for name in params]

345
    def _complete_op(self):
Y
Yang Yang 已提交
346 347 348 349 350 351 352
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
353 354 355 356 357 358 359 360 361 362
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
363
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
364
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
365 366 367 368 369 370 371 372

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
373
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
374
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
375 376
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
377 378 379 380 381 382 383


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
384 385
    """

Y
Yu Yang 已提交
386
    def __init__(self, rnn):
Y
Yang Yang 已提交
387 388 389 390
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
391 392 393 394
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
395
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
396 397

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
398 399
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
400
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
401
        self.rnn._complete_op()
Y
Yang Yang 已提交
402 403
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
404 405 406 407


class StaticRNNMemoryLink(object):
    """
408 409 410 411
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
412 413 414 415 416 417 418 419 420


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
421 422 423 424 425 426 427 428 429
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
430 431 432 433 434 435
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
436 437 438 439
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

440 441
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
442 443 444 445 446 447 448 449
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
450
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
451 452 453 454 455

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

456 457 458 459 460 461 462
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
463 464 465 466 467 468 469 470 471
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
472 473
        self._assert_in_rnn_block_('memory')
        if init is None:
474
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
475
                raise ValueError(
476
                    "if init is None, memory at least need shape and batch_ref")
477
            parent_block = self._parent_block()
Y
Yu Yang 已提交
478 479
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
480
            boot_var = parent_block.create_var(
481 482
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
483
                dtype=batch_ref.dtype,
484
                persistable=False)
Y
Yu Yang 已提交
485 486

            parent_block.append_op(
487 488
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
489 490 491
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
492
                    'shape': boot_var.shape,
F
fengjiayi 已提交
493
                    'dtype': boot_var.dtype,
494 495
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
496 497 498 499 500
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
501
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
502
                dtype=init.dtype,
Y
Yu Yang 已提交
503 504 505 506 507 508 509 510 511 512
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
513 514
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
515 516 517
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
518
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
519 520 521 522 523 524 525 526
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
527
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
528 529 530 531
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
532
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
533

534
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
535 536
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
537
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
538 539 540 541 542 543 544 545 546 547 548 549

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

550
    def _parent_block(self):
551
        prog = self.helper.main_program
Y
Yu Yang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

567
    def _complete_op(self):
568 569
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
570
        parent_block = self._parent_block()
Y
Yu Yang 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
609
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
610 611 612 613 614

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
615
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
631
                'sub_block': rnn_block
Y
Yu Yang 已提交
632
            })
Y
Yu Yang 已提交
633 634


Y
Yang Yang(Tony) 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
650
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
651 652 653 654
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
655 656 657 658 659 660 661 662 663 664
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
665 666 667
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
668

X
Xin Pan 已提交
669 670 671 672 673 674 675
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
676 677
    """

Y
Yang Yang(Tony) 已提交
678 679 680 681
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

682 683
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
684 685 686 687
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
688
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
689 690 691 692 693 694 695 696
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

697
    def _complete(self):
Y
Yang Yang(Tony) 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
726 727 728 729
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
730 731 732 733
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
734
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
735 736


737
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
738 739 740
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
741
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
742 743 744
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
745 746 747 748

        .. code-block:: text

            x is a LoDTensor:
749 750
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
751 752
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
753 754 755
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
756

Y
yangyaming 已提交
757 758 759 760 761 762 763 764 765
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
766 767 768 769

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
770 771
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
772 773 774 775 776 777 778 779

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
780
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
781
            out = layers.lod_rank_table(x=x, level=0)
782
    """
Y
Yu Yang 已提交
783 784 785
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
786
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
787 788 789 790 791 792
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
793 794


Y
yuyang18 已提交
795
@templatedoc()
796
def max_sequence_len(rank_table):
Y
yuyang18 已提交
797 798 799 800 801 802 803 804
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
805 806

    Args:
Y
yuyang18 已提交
807
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
808 809

    Returns:
Y
yuyang18 已提交
810
        ${out_comment}.
F
fengjiayi 已提交
811 812 813 814 815 816 817 818 819 820
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


821
def lod_tensor_to_array(x, table):
F
fengjiayi 已提交
822 823 824 825 826
    """ 
    Convert a LoDTensor to a LoDTensorArray.

    This function split a LoDTesnor to a LoDTensorArray according to its LoD 
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in 
F
fengjiayi 已提交
827 828 829
    PaddlePaddle. The generated LoDTensorArray of this function can be further read 
    or written by `read_from_array()` and `write_to_array()` operators. However, 
    this function is generally an internal component of PaddlePaddle `DynamicRNN`. 
F
fengjiayi 已提交
830
    Users should not use it directly.
831 832

    Args:
F
fengjiayi 已提交
833
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
834 835
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
F
fengjiayi 已提交
836
                                descending order. It is generally generated 
F
fengjiayi 已提交
837
                                by `layers.lod_rank_table()` API.
838 839

    Returns:
F
fengjiayi 已提交
840
        Variable: The LoDTensorArray that has been converted from the input tensor.
841 842 843 844 845 846 847

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
848
    """
849 850
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
851
        name=unique_name.generate("lod_tensor_to_array"),
852
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
853
        dtype=x.dtype)
854 855 856 857 858 859 860 861
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


862
def array_to_lod_tensor(x, table):
863
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
864 865

    Args:
866
        x (Variable|list): The lod tensor array to be converted to a tensor.
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
882
    """
883
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
884
    tmp = helper.create_tmp_variable(dtype=x.dtype)
885 886 887 888 889 890 891 892
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


893
def increment(x, value=1.0, in_place=True):
894 895
    """
    This function performs an operation that increments each value in the
896 897 898 899 900 901 902 903 904
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
905
        Variable: The elementwise-incremented object.
906 907 908 909 910 911

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
912
    """
Y
Yu Yang 已提交
913
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
914
    if not in_place:
F
fengjiayi 已提交
915
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
916 917
    else:
        out = x
Y
Yu Yang 已提交
918 919 920
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
921
        outputs={'Out': [out]},
922
        attrs={'step': float(value)})
Y
Yang Yu 已提交
923
    return out
Y
Yu Yang 已提交
924 925


926
def array_write(x, i, array=None):
927 928 929 930 931
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
932 933 934

    Args:
        x (Variable|list): The input tensor from which the data will be read.
935 936 937 938 939 940 941 942
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

943
    Returns:
944
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
945 946

    Examples:
D
dzhwinter 已提交
947
        .. code-block:: python
948 949 950 951

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
952
    """
Y
Yu Yang 已提交
953 954 955 956 957
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
958
            dtype=x.dtype)
Y
Yu Yang 已提交
959 960 961 962 963 964 965 966
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


967
def create_array(dtype):
968
    """
Q
qiaolongfei 已提交
969
    **Create LoDTensorArray**
970

Q
qiaolongfei 已提交
971 972
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
973 974

    Args:
Q
qiaolongfei 已提交
975
        dtype (int|float): The data type of the elements in the lod_tensor_array.
976 977

    Returns:
978
        Variable: The lod_tensor_array variable storing the elements of data type.
979 980 981 982 983 984 985

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
986 987 988 989 990 991 992
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
993 994
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
995
    """
Y
yuyang18 已提交
996
    ${comment}
997

Y
yuyang18 已提交
998 999
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1000 1001

    Args:
Y
yuyang18 已提交
1002 1003 1004
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1005 1006 1007
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1008
        ${out_comment}.
1009
    """
Y
Yang Yang(Tony) 已提交
1010 1011 1012 1013 1014
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1015 1016 1017 1018 1019 1020
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1021
    helper.append_op(
J
JiayiFeng 已提交
1022 1023 1024 1025
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1026
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1027 1028 1029
    return cond


1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1060
def array_read(array, i):
1061 1062
    """
    This function performs the operation to read the data in as an
1063
    LOD_TENSOR_ARRAY.
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
        
        And:
        
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1079
    Args:
1080 1081 1082
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1083 1084
    Returns:
        Variable: The tensor type variable that has the data written to it.
1085

K
kavyasrinet 已提交
1086
    Examples:
1087 1088
        .. code-block:: python

K
kavyasrinet 已提交
1089 1090 1091
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1092
    """
Y
Yu Yang 已提交
1093 1094 1095 1096 1097
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1098
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1105 1106


1107
def shrink_memory(x, i, table):
1108
    """
Y
yuyang18 已提交
1109
    This function creates an operator to shrink rnn memory using the RankTable
1110
    as mentioned in the input parameter.
Y
yuyang18 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1131
    """
Y
Yang Yu 已提交
1132
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1133
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1134
    helper.append_op(
Y
Yang Yu 已提交
1135
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1136 1137 1138 1139 1140 1141
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1142 1143


1144
def array_length(array):
1145
    """
Q
qiaolongfei 已提交
1146
    **Get the Length of Input LoDTensorArray**
1147 1148

    This function performs the operation to find the length of the input
1149
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1150

1151 1152
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1153 1154 1155 1156 1157 1158 1159 1160
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1161
        .. code-block:: python
K
kavyasrinet 已提交
1162 1163 1164 1165 1166

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1167

1168
    """
Y
Yang Yu 已提交
1169 1170 1171 1172 1173 1174
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1175 1176 1177


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1178 1179 1180 1181 1182 1183 1184
    """
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for 
    holding a ConditionalBlock, and helping users entering and exiting the 
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard 
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1226
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1227 1228 1229 1230
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1231
        self.is_scalar_condition = is_scalar_condition
1232
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1257
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1258 1259 1260 1261 1262
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1263
            if var_name in intermediate
Y
Yu Yang 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1276 1277 1278 1279 1280 1281 1282
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1283
    """
Q
qiaolongfei 已提交
1284 1285
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1286 1287 1288 1289

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1290

Q
qiaolongfei 已提交
1291
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1292 1293 1294 1295

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1296 1297 1298 1299

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1312
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1313 1314 1315
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1316 1317 1318

    """

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1348 1349
        """
        create a default case for this switch
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1418

X
improve  
Xin Pan 已提交
1419
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1420
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1421 1422
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1423 1424
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1425 1426
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1427 1428 1429 1430
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1431 1432 1433
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1434 1435 1436
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1437 1438 1439 1440
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1441
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1442 1443
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1444
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1456
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1457
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1458
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1459
                dtype=x.dtype)
Y
Yu Yang 已提交
1460 1461

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1462
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1463
                dtype=x.dtype)
Y
Yu Yang 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1482
    def _parent_block(self):
Y
Yu Yang 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1498
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1499 1500 1501 1502 1503
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1504 1505
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1506
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1507 1508 1509
            out_table.append(outside_out)

            # assign local var to outside
1510
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1534
                    level=0))
Y
Yu Yang 已提交
1535
        return rlist
1536 1537 1538


class DynamicRNN(object):
Y
yuyang18 已提交
1539
    """
Y
yuyang18 已提交
1540 1541 1542
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1571 1572 1573 1574
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1575 1576
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1577 1578 1579 1580
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1581 1582
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1602 1603 1604
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1605
                "step_input() can only take a Variable as its input.")
1606 1607 1608
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1609
                name=unique_name.generate('lod_rank_table'),
1610 1611 1612 1613 1614 1615 1616
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1617 1618
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1629 1630
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1631 1632

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1633
            name=unique_name.generate('dynamic_rnn_input_array'),
1634 1635 1636 1637 1638 1639 1640 1641
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1642
        return array_read(array=input_array, i=self.step_idx)
1643

Y
yangyaming 已提交
1644
    def static_input(self, x):
Y
yuyang18 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1663
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1673 1674
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1675 1676 1677 1678
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1679 1680
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1681 1682
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1683 1684 1685 1686
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1687
            increment(x=self.step_idx, value=1.0, in_place=True)
1688 1689

            for new_mem, mem_array in self.mem_link:
1690 1691
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1692 1693 1694 1695 1696
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1697 1698 1699 1700 1701

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1702
                    x=each_array, table=self.lod_rank_table))
1703 1704

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1705 1706 1707
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1708
        if self.status != DynamicRNN.AFTER_RNN:
1709 1710
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1711 1712 1713 1714 1715
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1716 1717 1718 1719 1720 1721
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1722
        """
Y
yuyang18 已提交
1723
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1786 1787 1788 1789 1790 1791
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1792 1793 1794 1795 1796 1797 1798 1799
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1800
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1811
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1812
                name=unique_name.generate('dynamic_rnn_mem_array'),
1813 1814 1815 1816
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1817
                inputs={'X': init_tensor,
1818 1819
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1820
            retv = array_read(array=mem_array, i=self.step_idx)
1821
            retv = shrink_memory(
1822
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1823 1824 1825 1826 1827 1828 1829 1830 1831
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1832
                name=unique_name.generate('mem_init'), dtype=dtype)
1833
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1834 1835
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1889 1890 1891 1892
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1893
                name=unique_name.generate("_".join(
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1912 1913


1914
@autodoc()
Y
Yang Yu 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1927 1928 1929 1930


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1931
    Test whether a Variable is empty.
1932 1933

    Args:
F
fengjiayi 已提交
1934 1935
        x (Variable): The Variable to be tested.
        cond (Variable|None): Output parameter. Returns the test result 
F
fengjiayi 已提交
1936
                              of given 'x'. Default: None
1937 1938

    Returns:
F
fengjiayi 已提交
1939
        Variable: A bool scalar. True if 'x' is an empty Variable.
1940 1941 1942

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1943
                   not bool.
1944 1945 1946 1947

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1948 1949 1950
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond