linear_chain_crf_op.cc 11.8 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/linear_chain_crf_op.h"

namespace paddle {
namespace operators {

C
caoying03 已提交
20
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
21
 public:
C
caoying03 已提交
22
  LinearChainCRFOpMaker(framework::OpProto* proto,
C
caoying03 已提交
23 24 25 26 27 28
                        framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Emission",
        "(LoDTensor, default: LoDTensor<float>). "
        "The unscaled emission weight matrix for the linear chain CRF. "
C
caoying03 已提交
29 30
        "This input is a LoDTensor with shape [N x D] where N is the size of "
        "the mini-batch and D is the total tag number.");
C
caoying03 已提交
31 32 33
    AddInput(
        "Transition",
        "(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
C
caoying03 已提交
34
        "The learnable parameter for the linear_chain_crf operator. "
C
caoying03 已提交
35 36 37
        "See more details in the operator's comments.");
    AddInput(
        "Label",
C
caoying03 已提交
38
        "(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
C
caoying03 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
        "LoDTensor with shape [N x 1], where N is the total element number in "
        "a mini-batch.");
    AddOutput(
        "Alpha",
        "Tensor, default: Tensor<float>. The forward vectors for the entire "
        "batch. A two dimensional tensor with shape [N x D], "
        "denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to "
        "calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores "
        "the unnormalized probabilites of all possible unfinished sequences of "
        "tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, "
        "\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for "
        "each tag value \f$v$\f. This vector is called a forward vecotr and "
        "will also be used in backward computations.")
        .AsIntermediate();
C
caoying03 已提交
53 54 55 56 57 58 59 60 61 62
    AddOutput("EmissionExps",
              "The exponentials of Input(Emission). This is an intermediate "
              "computational result in forward computation, and will be reused "
              "in backward computation.")
        .AsIntermediate();
    AddOutput("TransitionExps",
              "The exponentials of Input(Transition). This is an intermediate "
              "computational result in forward computation, and will be reused "
              "in backward computation.")
        .AsIntermediate();
C
caoying03 已提交
63 64
    AddOutput(
        "LogLikelihood",
C
caoying03 已提交
65
        "(Tensor, default: Tensor<float>). The logarithm of the conditional "
C
caoying03 已提交
66 67
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
68 69
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
70 71 72 73 74 75 76 77 78
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and
\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs.

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
79 80 81
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
82

C
caoying03 已提交
83
This operator implements the Forward-Backward algorithm for the linear chain
C
caoying03 已提交
84 85
CRF. Please see http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for reference.
C
caoying03 已提交
86 87 88

Equation:

89 90 91 92 93 94 95 96
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote Input(Label) as \f$s\f$ here.
C
caoying03 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
                 + \sum_{l=1}^L x_{s_l}
                 + \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.

Finaly, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.

NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
114
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
115 116 117 118
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

119
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
120 121 122 123 124

)DOC");
  }
};

C
caoying03 已提交
125
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
126 127 128
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
129 130 131 132 133 134 135 136 137
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
138 139 140 141
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
142 143 144 145 146
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
147
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
148 149 150
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
C
caoying03 已提交
151
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
152
                      "The Input(Transition) should be a 2-D tensor.");
C
caoying03 已提交
153
    PADDLE_ENFORCE_EQ(
154 155
        transition_dims[0] - 2, transition_dims[1],
        "An invalid dimension for the Input(Transition), which should "
C
caoying03 已提交
156
        "be a 2-D tensor with shape [(D + 2) x D].");
C
caoying03 已提交
157 158
    PADDLE_ENFORCE_EQ(
        emission_dims[1], transition_dims[1],
159
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
160
        "should be equal to the tag number.");
C
caoying03 已提交
161 162

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
163
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
164 165 166 167 168 169
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_dims[0], label_dims[0],
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
170 171

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
172 173
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
174
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
175
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
176 177
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
178 179 180
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
181
 protected:
182 183
  // Explicitly set that the data type of output of the linear_chain_crf
  // operator is determined by its input "Emission".
C
caoying03 已提交
184 185
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
C
caoying03 已提交
186
    return framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type());
C
caoying03 已提交
187
  }
C
caoying03 已提交
188 189
};

C
caoying03 已提交
190
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
191 192 193
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
194 195 196 197 198 199 200 201 202 203 204
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL,
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
205 206 207
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

208
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
C
caoying03 已提交
209 210 211 212 213 214 215 216 217 218
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
                      "The Input(TransitionExps) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(
        transition_exps_dims[0] - 2, transition_exps_dims[1],
        "An invalid dimension for the Input(TransitionExps), which should "
        "be a 2-D tensor with shape [(D + 2) x D].");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[1], transition_exps_dims[1],
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
219 220

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
221 222 223 224 225 226 227 228
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[0], label_dims[0],
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
229 230 231 232 233 234 235
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
    }
C
caoying03 已提交
236
  }
C
caoying03 已提交
237 238 239

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
240
  // operator is determined by its input: gradients of LogLikelihood.
C
caoying03 已提交
241 242
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
243 244
    return framework::ToDataType(
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type());
C
caoying03 已提交
245
  }
C
caoying03 已提交
246 247 248 249 250 251
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
caoying03 已提交
252 253
REGISTER_OP(linear_chain_crf, ops::LinearChainCRFOp, ops::LinearChainCRFOpMaker,
            linear_chain_crf_grad, ops::LinearChainCRFGradOp);
254 255
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
C
caoying03 已提交
256 257
    ops::LinearChainCRFOpKernel<paddle::platform::CPUPlace, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUPlace, double>);
258 259
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
C
caoying03 已提交
260 261
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUPlace, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUPlace, double>);