linear_chain_crf_op.cc 24.0 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/linear_chain_crf_op.h"

namespace paddle {
namespace operators {

C
caoying03 已提交
20 21 22 23 24 25 26 27 28
namespace {
template <typename T>
T NormalizeL1(T* x, size_t len) {
  T sum = 0.;
  for (size_t i = 0; i < len; ++i) sum += x[i];
  // (This comment is from the old LinearChainCRFLayer.)
  // Right now, we just bet that sum won't be zero. If this really happens, we
  // will figure out what should be done then.
  PADDLE_ENFORCE(sum,
C
caoying03 已提交
29
                 "The unnormalized probabilities of all possible unfinished "
C
caoying03 已提交
30
                 "sequences must be greater than 0.");
C
caoying03 已提交
31 32
  T s = 1. / sum;
  for (size_t i = 0; i < len; ++i) x[i] *= s;
C
caoying03 已提交
33 34 35 36
  return sum;
}
}  // namespace

37 38 39
using framework::LoDTensor;
using framework::LoD;

C
caoying03 已提交
40
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
41
 public:
C
caoying03 已提交
42
  LinearChainCRFOpMaker(framework::OpProto* proto,
C
caoying03 已提交
43 44 45 46 47 48 49 50 51 52 53 54
                        framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Emission",
        "(LoDTensor, default: LoDTensor<float>). "
        "The unscaled emission weight matrix for the linear chain CRF. "
        "This input is a LoDTensor with shape [N x D] where N is the total "
        "element number of all input squences in a mini-batch, "
        "and D is the total tag number.");
    AddInput(
        "Transition",
        "(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
C
caoying03 已提交
55
        "The learnable parameter for the linear_chain_crf operator. "
C
caoying03 已提交
56 57 58
        "See more details in the operator's comments.");
    AddInput(
        "Label",
C
caoying03 已提交
59
        "(LoDTensor, default: LoDTensor<int>). The groundtruth which is a 2-D "
C
caoying03 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
        "LoDTensor with shape [N x 1], where N is the total element number in "
        "a mini-batch.");
    AddOutput(
        "Alpha",
        "Tensor, default: Tensor<float>. The forward vectors for the entire "
        "batch. A two dimensional tensor with shape [N x D], "
        "denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to "
        "calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores "
        "the unnormalized probabilites of all possible unfinished sequences of "
        "tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, "
        "\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for "
        "each tag value \f$v$\f. This vector is called a forward vecotr and "
        "will also be used in backward computations.")
        .AsIntermediate();
C
caoying03 已提交
74 75 76 77 78 79 80 81 82 83
    AddOutput("EmissionExps",
              "The exponentials of Input(Emission). This is an intermediate "
              "computational result in forward computation, and will be reused "
              "in backward computation.")
        .AsIntermediate();
    AddOutput("TransitionExps",
              "The exponentials of Input(Transition). This is an intermediate "
              "computational result in forward computation, and will be reused "
              "in backward computation.")
        .AsIntermediate();
C
caoying03 已提交
84 85
    AddOutput(
        "LogLikelihood",
C
caoying03 已提交
86
        "(Tensor, default: Tensor<float>). The logarithm of the conditional "
C
caoying03 已提交
87 88
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
89 90
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
91 92 93 94 95 96 97 98 99 100
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and
\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs.

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
independences among inputs. They only concern about the input and the output
C
caoying03 已提交
101 102
being linear sequences. Thus, the graph model of such a CRF is a simple chain
or a line, which results in the linear chain CRF.
C
caoying03 已提交
103

C
caoying03 已提交
104 105
This operator implements the Forward-Backward algorithm for the linear chain
CRF. Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.
C
caoying03 已提交
106 107 108

Equation:

109 110 111 112 113 114 115 116
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote Input(Label) as \f$s\f$ here.
C
caoying03 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
                 + \sum_{l=1}^L x_{s_l}
                 + \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.

Finaly, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.

NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

2. Because this operator performs globally normaliztion over all possible
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

139
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
140 141 142 143 144

)DOC");
  }
};

C
caoying03 已提交
145
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
146 147 148
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
149 150 151 152 153 154 155 156 157
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
158 159 160 161
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
162 163 164 165 166
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
167
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
168 169 170
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
C
caoying03 已提交
171
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
172
                      "The Input(Transition) should be a 2-D tensor.");
C
caoying03 已提交
173
    PADDLE_ENFORCE_EQ(
174 175
        transition_dims[0] - 2, transition_dims[1],
        "An invalid dimension for the Input(Transition), which should "
C
caoying03 已提交
176
        "be a 2-D tensor with shape [(D + 2) x D].");
C
caoying03 已提交
177 178
    PADDLE_ENFORCE_EQ(
        emission_dims[1], transition_dims[1],
179
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
180
        "should be equal to the tag number.");
C
caoying03 已提交
181 182

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
183
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
184 185 186 187 188 189
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_dims[0], label_dims[0],
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
190 191

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
192 193
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
194 195 196
    // (TODO caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
    // is the sequence number in a mini-batch. The dimension set here should be
    // resized to its correct size in the function Compute.
C
caoying03 已提交
197
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
C
caoying03 已提交
198 199

    ctx->ShareLoD("Emission", /*->*/ "EmissionExps");
C
caoying03 已提交
200 201
  }

C
caoying03 已提交
202
 protected:
203 204
  // Explicitly set that the data type of output of the linear_chain_crf
  // operator is determined by its input "Emission".
C
caoying03 已提交
205 206
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
C
caoying03 已提交
207
    return framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type());
C
caoying03 已提交
208
  }
C
caoying03 已提交
209 210
};

211
template <typename T>
C
caoying03 已提交
212
class LinearChainCRFOpKernel<platform::CPUPlace, T>
213 214 215 216 217 218 219
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");
    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
C
caoying03 已提交
220 221 222 223
    auto* emission_exps = ctx.Output<LoDTensor>("EmissionExps");
    emission_exps->mutable_data<T>(platform::CPUPlace());
    auto* transition_exps = ctx.Output<Tensor>("TransitionExps");
    transition_exps->mutable_data<T>(platform::CPUPlace());
224 225 226
    auto* label = ctx.Input<LoDTensor>("Label");

    auto in_lod = emission_weights->lod();
C
caoying03 已提交
227 228
    PADDLE_ENFORCE(in_lod.size(), "Input(Emission) is not a sequence.");

229 230 231 232 233 234 235 236 237
    // TODO(caoying) The checks related to LoD information should be
    // moved into InferShape once after the InferShape is refactored.
    PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                      "The Input(Emission) should be a sequence.");
    PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                      "The Input(Label) should be a sequence.");
    const size_t level = 0;

    auto emission_dims = emission_weights->dims();
C
caoying03 已提交
238 239
    const size_t batch_size = emission_dims[0];
    const size_t tag_num = emission_dims[1];
240 241 242 243
    const size_t seq_num = in_lod[level].size() - 1;

    Tensor emission_row_max;
    emission_row_max.mutable_data<T>(
C
caoying03 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        framework::make_ddim({static_cast<int>(batch_size), 1}),
        platform::CPUPlace());

    auto place = ctx.GetEigenDevice<platform::CPUPlace>();
    auto x = EigenMatrix<T>::From(*emission_weights);
    auto x_row_max = EigenMatrix<T>::From(emission_row_max);
    x_row_max.device(place) =
        x.maximum(Eigen::DSizes<int, 1>(1))
            .reshape(Eigen::DSizes<int, 2>(int(batch_size), 1));

    auto x_exps = EigenMatrix<T>::From(*emission_exps);
    x_exps.device(place) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();

    auto w = EigenMatrix<T>::From(*transition_weights);
    auto w_exps = EigenMatrix<T>::From(*transition_exps);
    w_exps.device(place) = w.exp();
261

C
caoying03 已提交
262
    auto* alpha = ctx.Output<LoDTensor>("Alpha");
C
caoying03 已提交
263
    alpha->mutable_data<T>(platform::CPUPlace());
C
caoying03 已提交
264
    auto* ll = ctx.Output<LoDTensor>("LogLikelihood");
265 266
    // resize the output tensor to the correct dimension.
    ll->Resize({static_cast<int>(seq_num), 1});
C
caoying03 已提交
267
    T* log_likelihood = ll->mutable_data<T>(platform::CPUPlace());
268 269 270
    for (size_t i = 0; i < seq_num; ++i) {
      int start_pos = static_cast<int>(in_lod[level][i]);
      int end_pos = static_cast<int>(in_lod[level][i + 1]);
C
caoying03 已提交
271 272
      if (end_pos == start_pos) {
        // If an empty input sequence is given, pad 0 for its cost.
C
caoying03 已提交
273
        log_likelihood[i] = 0.;
C
caoying03 已提交
274 275
        continue;
      }
276

C
caoying03 已提交
277 278 279 280 281
      const Tensor one_seq = emission_weights->Slice(start_pos, end_pos);
      Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos);
      Tensor one_seq_exps = emission_exps->Slice(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice(start_pos, end_pos);
      Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);
282 283

      log_likelihood[i] = ForwardOneSequence(
C
caoying03 已提交
284 285
          &one_seq, &one_seq_row_max, &one_seq_exps, transition_weights,
          transition_exps, &one_seq_label, &one_seq_alpha);
286 287 288 289
    }
  }

 protected:
C
caoying03 已提交
290 291 292 293 294 295 296 297 298 299 300 301
  T ForwardOneSequence(const Tensor* emission, const Tensor* emission_row_max,
                       const Tensor* emission_exps, const Tensor* trans_weights,
                       const Tensor* trans_weight_exps, const Tensor* label,
                       Tensor* alpha) const {
    const T* x = emission->data<T>();
    const T* x_row_max = emission_row_max->data<T>();
    const T* x_exps = emission_exps->data<T>();
    const T* w = trans_weights->data<T>();
    const T* w_exps = trans_weight_exps->data<T>();
    T* alpha_value = alpha->data<T>();

    auto x_dims = emission->dims();
302 303 304 305
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    // The 1st row of w are transition weights for start mask.
    // The 2nd row of w are transition weights for end mask.
C
caoying03 已提交
306
    // Transition weights among other tags begin from the 3rd row of w.
C
caoying03 已提交
307
    const size_t state_trans_base_idx = 2;
308 309

    for (size_t i = 0; i < tag_num; ++i) {
C
caoying03 已提交
310
      alpha_value[i] = w_exps[i] * x_exps[i];
311
    }
C
caoying03 已提交
312
    T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));
313 314 315

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
C
caoying03 已提交
316
        T sum = 0.;
317 318
        for (size_t j = 0; j < tag_num; ++j) {
          sum += alpha_value[(k - 1) * tag_num + j] *
C
caoying03 已提交
319
                 w_exps[(j + state_trans_base_idx) * tag_num + i];
320
        }
C
caoying03 已提交
321
        alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
322
      }
C
caoying03 已提交
323
      // NormalizeL1 is to avoid underflow or overflow at (*).
C
caoying03 已提交
324 325
      ll -= x_row_max[k] +
            std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
326 327 328
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
C
caoying03 已提交
329
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
330 331
    }
    ll -= std::log(sum);
C
caoying03 已提交
332
    // Now ll is equal to -log(Z).
333

C
caoying03 已提交
334
    const int* lbl = label->data<int>();
335 336 337
    PADDLE_ENFORCE_LT(
        *std::max_element(lbl, lbl + seq_length), tag_num,
        "An invalid tag label that execesses the largest tag number.");
C
caoying03 已提交
338

339
    // Calculate the nominator part, which depends on the label sequence.
C
caoying03 已提交
340 341
    ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
          w[tag_num + lbl[seq_length - 1]] /*end transition*/;
C
caoying03 已提交
342 343 344 345
    for (size_t k = 1; k < seq_length; ++k) {
      ll += x[k * tag_num + lbl[k]] +
            w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]];
    }
346 347 348 349
    return -ll;
  }
};

C
caoying03 已提交
350
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
351 352 353
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Emission")),
                   "Output(Emission@GRAD) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Transition")),
                   "Output(Transition@GRAD) should be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL,
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
370 371 372 373 374
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

    auto transition_exps_dims =
        ctx->GetInputDim(framework::GradVarName("TransitionExps"));
C
caoying03 已提交
375 376 377 378 379 380 381 382 383 384
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
                      "The Input(TransitionExps) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(
        transition_exps_dims[0] - 2, transition_exps_dims[1],
        "An invalid dimension for the Input(TransitionExps), which should "
        "be a 2-D tensor with shape [(D + 2) x D].");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[1], transition_exps_dims[1],
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
385 386

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
387 388 389 390 391 392 393 394 395 396 397 398
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[0], label_dims[0],
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

    ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
    ctx->SetOutputDim(framework::GradVarName("Transition"),
                      transition_exps_dims);
  }
C
caoying03 已提交
399 400 401 402 403 404 405 406

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
  // operator is determined by its input "EmissionExps".
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<LoDTensor>("EmissionExps")->type());
  }
C
caoying03 已提交
407 408
};

409
template <typename T>
C
caoying03 已提交
410
class LinearChainCRFGradOpKernel<platform::CPUPlace, T>
411 412 413
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
caoying03 已提交
414
    PADDLE_ENFORCE(platform::is_cpu_place(platform::CPUPlace()),
415
                   "This kernel only runs on CPU.");
C
caoying03 已提交
416 417 418
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* emission_exps = ctx.Input<LoDTensor>("EmissionExps");
    auto* transition_exps = ctx.Input<Tensor>("TransitionExps");
C
caoying03 已提交
419 420 421
    auto* alpha = ctx.Input<LoDTensor>("Alpha");
    const T* ll_grad =
        ctx.Input<Tensor>(framework::GradVarName("LogLikelihood"))->data<T>();
C
caoying03 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

    auto* emission_grad =
        ctx.Output<Tensor>(framework::GradVarName("Emission"));
    emission_grad->mutable_data<T>(platform::CPUPlace());

    auto* trans_grad = ctx.Output<Tensor>(framework::GradVarName("Transition"));
    if (trans_grad) trans_grad->mutable_data<T>(platform::CPUPlace());

    auto emission_dims = emission_exps->dims();

    // Beta is the memo table used in dynamic programming to calculate the
    // backwark vectors. For a backward vector i (the i-th row of beta), it
    // captures the unnormalized probabilities of partial sequences starting at
    // position i.
    Tensor beta;
    beta.mutable_data<T>(emission_dims, platform::CPUPlace());

    const size_t level = 0;  // currently, only support sequence.
C
caoying03 已提交
440 441 442
    auto lod = label->lod();
    PADDLE_ENFORCE(lod.size(), "Input(Label) is not a sequence.");

C
caoying03 已提交
443 444 445
    for (size_t i = 0; i < lod[level].size() - 1; ++i) {
      int start_pos = static_cast<int>(lod[level][i]);
      int end_pos = static_cast<int>(lod[level][i + 1]);
C
caoying03 已提交
446
      if (end_pos == start_pos) continue;
C
caoying03 已提交
447 448

      const Tensor one_seq_emission_exps =
C
caoying03 已提交
449 450 451 452 453 454 455 456 457 458
          emission_exps->Slice(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice(start_pos, end_pos);
      const Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);
      Tensor one_seq_beta = beta.Slice(start_pos, end_pos);
      Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos);

      BackwardOneSequence(ctx.device_context(), ll_grad[i],
                          &one_seq_emission_exps, transition_exps,
                          &one_seq_alpha, &one_seq_label, &one_seq_beta,
                          trans_grad, &one_seq_emission_grad);
C
caoying03 已提交
459 460 461 462
    }
  }

 protected:
C
caoying03 已提交
463
  void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad,
C
caoying03 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                           const Tensor* emission_exps,
                           const Tensor* transition_exps, const Tensor* alpha,
                           const Tensor* label, Tensor* beta,
                           Tensor* transition_grad,
                           Tensor* emission_grad) const {
    const T* w_exps = transition_exps->data<T>();
    const T* x_exps = emission_exps->data<T>();
    const int* label_value = label->data<int>();
    T* beta_value = beta->data<T>();

    auto x_dims = emission_exps->dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    const size_t state_trans_base_idx = 2;

C
caoying03 已提交
479
    // Calculate the backward vectors: beta.
C
caoying03 已提交
480
    // First, calculate the initialition state.
C
caoying03 已提交
481
    for (size_t i = 0; i < tag_num; ++i) {
C
caoying03 已提交
482
      beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
C
caoying03 已提交
483
    }
C
caoying03 已提交
484
    NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);
C
caoying03 已提交
485

C
caoying03 已提交
486 487 488 489
    for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
490 491 492
          sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *
                 x_exps[(k + 1) * tag_num + j] *
                 beta_value[(k + 1) * tag_num + j];
C
caoying03 已提交
493 494 495
        }
        beta_value[k * tag_num + i] = sum;
      }
C
caoying03 已提交
496
      // NormalizeL1 is to avoid underflow or overflow at (**).
C
caoying03 已提交
497 498 499 500 501 502 503
      NormalizeL1<T>(beta_value + k * tag_num, tag_num);
    }

    auto alpha_mat = EigenMatrix<T>::From(*alpha);
    auto beta_mat = EigenMatrix<T>::From(*beta);
    auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
    auto* place = ctx.GetEigenDevice<platform::CPUPlace>();
C
caoying03 已提交
504 505 506 507 508 509 510 511
    auto prob = alpha_mat * beta_mat;
    auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                       .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                       .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
    x_grad_mat.device(*place) = prob / row_sum;

    for (size_t k = 0; k < seq_length; ++k) {
      x_grad_mat(k, label_value[k]) -= static_cast<T>(1.);
C
caoying03 已提交
512
    }
C
caoying03 已提交
513 514 515 516 517 518 519 520 521 522

    if (transition_grad) {
      T* trans_grad = transition_grad->data<T>();
      for (size_t k = 0; k < tag_num; ++k) {
        trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
        trans_grad[tag_num + k] +=
            x_grad_mat(/*to end state*/ seq_length - 1, k);
      }

      auto x_exps_mat = EigenMatrix<T>::From(*emission_exps);
C
caoying03 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

      // TODO(caoying): Fix this to avoid using this local variable.
      Tensor tmp;
      tmp.mutable_data<T>(beta->dims(), platform::CPUPlace());
      auto tmp_mat = EigenMatrix<T>::From(tmp);
      auto prob = beta_mat * x_exps_mat;
      auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                         .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                         .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
      tmp_mat.device(*place) = prob / row_sum;

      for (size_t k = 1; k < seq_length; ++k) {
        T sum = 0.;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
538
            sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
C
caoying03 已提交
539
                   alpha_mat(k - 1, i) * tmp_mat(k, j);
C
caoying03 已提交
540
          }
C
caoying03 已提交
541
        }
C
caoying03 已提交
542 543 544
        sum = 1. / sum;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
545 546
            trans_grad[(i + state_trans_base_idx) * tag_num + j] +=
                sum * w_exps[(i + state_trans_base_idx) * tag_num + j] *
C
caoying03 已提交
547
                alpha_mat(k - 1, i) * tmp_mat(k, j);
C
caoying03 已提交
548 549
          }
        }
C
caoying03 已提交
550 551
        trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num +
                   label_value[k]] -= static_cast<T>(1.);
C
caoying03 已提交
552 553
      }
    }
554 555 556
  }
};

C
caoying03 已提交
557 558 559 560
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
caoying03 已提交
561 562
REGISTER_OP(linear_chain_crf, ops::LinearChainCRFOp, ops::LinearChainCRFOpMaker,
            linear_chain_crf_grad, ops::LinearChainCRFGradOp);
563 564
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
C
caoying03 已提交
565
    ops::LinearChainCRFOpKernel<paddle::platform::CPUPlace, float>);
566 567
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
C
caoying03 已提交
568
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUPlace, float>);