ExpandConvTransLayer.cpp 2.7 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvTransLayer.h"

20 21 22 23 24
/* The implementation of the convTransLayer is basically a swap of forward and
 * backward of the original convLayer.
 * The variable naming follows the convention of the convLayer.
 * */

W
wangyang59 已提交
25 26 27 28 29 30 31
namespace paddle {

REGISTER_LAYER(exconvt, ExpandConvTransLayer);

bool ExpandConvTransLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
32
  ExpandConvBaseLayer::init(layerMap, parameterMap);
W
wangyang59 已提交
33 34 35 36 37 38 39 40 41

  return true;
}

void ExpandConvTransLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
42
  resetOutput(batchSize, getOutputSize());
W
wangyang59 已提交
43 44

  MatrixPtr output = nullptr;
45
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
W
wangyang59 已提交
46 47 48
    LayerPtr prevLayer = getPrev(i);
    output = prevLayer->getOutputValue();
    REGISTER_TIMER_INFO("shrinkFwd", getName().c_str());
49
    bpropActs(output, getOutputValue(), i);
W
wangyang59 已提交
50 51 52
  }

  /* add the bias-vector */
53
  if (biases_.get()) {
W
wangyang59 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr imageGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(imageGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

75
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
W
wangyang59 已提交
76 77
    /* First, calculate the input layers error */
    for (size_t off = 0; off < imageGrad->getHeight(); off++) {
78
      if (getPrev(i)->getOutputGrad()) {
79 80
        expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off);
      }
W
wangyang59 已提交
81 82 83
    }
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
84
      bpropWeights(imageGrad, getPrev(i)->getOutputValue(), i);
W
wangyang59 已提交
85 86 87 88 89 90 91 92
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}


}  // namespace paddle