ExpandConvTransLayer.cpp 3.9 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvTransLayer.h"

20 21 22 23 24
/* The implementation of the convTransLayer is basically a swap of forward and
 * backward of the original convLayer.
 * The variable naming follows the convention of the convLayer.
 * */

W
wangyang59 已提交
25 26 27 28 29 30 31
namespace paddle {

REGISTER_LAYER(exconvt, ExpandConvTransLayer);

bool ExpandConvTransLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
32
  ConvBaseLayerCpu::init(layerMap, parameterMap);
W
wangyang59 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

  return true;
}

// Why this is necessary after calling init?
size_t ExpandConvTransLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  imgSizeH_.clear();
  imgSizeW_.clear();
  outputH_.clear();
  outputW_.clear();
  subN_.clear();
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    outputH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
    outputW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
    if (outputH_[i] == 0) outputH_[i] = outputX_[i];
    if (outputW_[i] == 0) outputW_[i] = outputX_[i];
    imgSizeH_.push_back(
        imageSize(outputH_[i], filterSize_[i], padding_[i], stride_[i]));
    imgSizeW_.push_back(
        imageSize(outputW_[i], filterSize_[i], padding_[i], stride_[i]));
    subN_.push_back(outputH_[i] * outputW_[i]);
    CHECK(layerSize == 0 ||
57 58
            imgSizeH_[i] * imgSizeW_[i] * (size_t)numFilters_ == layerSize);
    layerSize = imgSizeH_[i] * imgSizeW_[i] * numFilters_;
W
wangyang59 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  }
  getOutput().setFrameHeight(imgSizeH_[0]);
  getOutput().setFrameWidth(imgSizeW_[0]);
  return layerSize;
}

void ExpandConvTransLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  /* note: one sample correspond to one colum, and the
   *   transOutValue correspond sample to one row */
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  resetOutput(batchSize, getSize());

  MatrixPtr output = nullptr;
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    LayerPtr prevLayer = getPrev(i);
    output = prevLayer->getOutputValue();
    REGISTER_TIMER_INFO("shrinkFwd", getName().c_str());
79
    bpropActs(output, getOutputValue(), i);
W
wangyang59 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  }

  /* add the bias-vector */
  if (biases_.get() != NULL) {
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr imageGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(imageGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    /* First, calculate the input layers error */
    for (size_t off = 0; off < imageGrad->getHeight(); off++) {
108 109 110
      if (NULL != getPrev(i)->getOutputGrad()) {
        expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off);
      }
W
wangyang59 已提交
111 112 113
    }
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
114
      bpropWeights(imageGrad, getPrev(i)->getOutputValue(), i);
W
wangyang59 已提交
115 116 117 118 119 120 121 122
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}


}  // namespace paddle