ExpandConvTransLayer.cpp 10.9 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvTransLayer.h"

namespace paddle {

REGISTER_LAYER(exconvt, ExpandConvTransLayer);

bool ExpandConvTransLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
  ConvTransBaseLayer::init(layerMap, parameterMap);

  /* Initialize the projection */
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
    subM_.push_back(conf.channels() / conf.groups());
    subN_.push_back(conf.output_x() * conf.output_x());
    subK_.push_back(channel_ * conf.filter_size() * conf.filter_size() /
                    conf.groups());
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();
  }

  return true;
}

// Why this is necessary after calling init?
size_t ExpandConvTransLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  imgSizeH_.clear();
  imgSizeW_.clear();
  outputH_.clear();
  outputW_.clear();
  subN_.clear();
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    outputH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
    outputW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
    if (outputH_[i] == 0) outputH_[i] = outputX_[i];
    if (outputW_[i] == 0) outputW_[i] = outputX_[i];
    imgSizeH_.push_back(
        imageSize(outputH_[i], filterSize_[i], padding_[i], stride_[i]));
    imgSizeW_.push_back(
        imageSize(outputW_[i], filterSize_[i], padding_[i], stride_[i]));
    subN_.push_back(outputH_[i] * outputW_[i]);
    CHECK(layerSize == 0 ||
            imgSizeH_[i] * imgSizeW_[i] * (size_t)channel_ == layerSize);
    layerSize = imgSizeH_[i] * imgSizeW_[i] * channel_;
  }
  getOutput().setFrameHeight(imgSizeH_[0]);
  getOutput().setFrameWidth(imgSizeW_[0]);
  return layerSize;
}

void ExpandConvTransLayer::resetExpandInput(size_t height, size_t width) {
  Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_);
}

/*void ExpandConvTransLayer::resetConvOutput(size_t batchSize, int inIdx) {
  Matrix::resizeOrCreate(transOutValue_, batchSize * numFilters_, subN_[inIdx],
                         false, useGpu_);
}*/


void ExpandConvTransLayer::addSharedBias() {
  size_t mapW = getSize() / channel_;
  size_t mapH = getOutputValue()->getElementCnt() / mapW;
  MatrixPtr out =
      Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  out->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / channel_,
                          channel_);

  MatrixPtr bias =
      Matrix::create(biases_->getW()->getData(), 1,
                     biases_->getW()->getElementCnt(), false, useGpu_);
  transOutValue_->addBias(*bias, 1.0f);

  transOutValue_->reshape(mapW, mapH);
  transOutValue_->transpose(out, false);  // false means no memory allocation

  out->clear();
  bias->clear();
}

void ExpandConvTransLayer::addUnsharedBias() {
  MatrixPtr outValue = getOutputValue();
  MatrixPtr bias =
      Matrix::create(biases_->getW()->getData(), 1,
                     biases_->getW()->getElementCnt(), false, useGpu_);
  outValue->addBias(*bias, 1.0f);
}


void ExpandConvTransLayer::expandOneFrame(MatrixPtr image, size_t startIdx,
                                     int inIdx) {
  resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]);
  real *imgData = image->getData() + startIdx * image->getWidth();
  MatrixPtr imageTmp = Matrix::create(
      imgData, 1, imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel_, false,
      useGpu_);
  expandInput_->convExpand(*imageTmp, imgSizeH_[inIdx], imgSizeW_[inIdx],
                           channel_, filterSize_[inIdx],
                           filterSize_[inIdx], stride_[inIdx], stride_[inIdx],
                           padding_[inIdx], padding_[inIdx],
                           outputH_[inIdx], outputW_[inIdx]);
  imageTmp->clear();
}

void ExpandConvTransLayer::expandBackOnce(MatrixPtr imageGrad, int inIdx,
                                        int startIdx) {
  int subM = subM_[inIdx];
  int subN = subN_[inIdx];
  int subK = subK_[inIdx];

  LayerPtr prevLayer = getPrev(inIdx);
  if (NULL == prevLayer->getOutputGrad()) {
    return;
  }

  expandOneFrame(imageGrad, startIdx, inIdx);

  real *outGradData =
      prevLayer -> getOutputGrad()->getData()
                  + startIdx * subN * numFilters_[inIdx];

  real *wgtData = weights_[inIdx]->getW()->getData();
  real *expInData = expandInput_->getData();
  for (int g = 0; g < groups_[inIdx]; ++g) {
    MatrixPtr A =
        Matrix::create(wgtData, subK, subM, true, useGpu_);  // mark transpose
    MatrixPtr B = Matrix::create(expInData, subK, subN, false, useGpu_);
    MatrixPtr C = Matrix::create(outGradData, subM, subN, false, useGpu_);
    C->mul(A, B, 1, 1);

    A->clear();
    B->clear();
    C->clear();
    wgtData += subK * subM;
    expInData += subK * subN;
    outGradData += subM * subN;
  }
}

void ExpandConvTransLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  /* note: one sample correspond to one colum, and the
   *   transOutValue correspond sample to one row */
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  resetOutput(batchSize, getSize());

  MatrixPtr output = nullptr;
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    LayerPtr prevLayer = getPrev(i);
    output = prevLayer->getOutputValue();
    REGISTER_TIMER_INFO("shrinkFwd", getName().c_str());
    shrinkFwd(output, i);
  }

  /* add the bias-vector */
  if (biases_.get() != NULL) {
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvTransLayer::shrinkFwd(MatrixPtr output, int inpIdx) {
  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];

  size_t batchSize = output->getHeight();
  MatrixPtr image = getOutputValue();

  /* reset the expand-grad memory */
  resetExpandInput(subK * groups_[inpIdx], subN);

  real *localData = output->getData();
  real *imageData = image->getData();
  for (size_t n = 0; n < batchSize; n++) {
    real *wgtData = weights_[inpIdx]->getW()->getData();
    real *expandInData = expandInput_->getData();

    for (int g = 0; g < groups_[inpIdx]; g++) {
      // create temporary matrix
      MatrixPtr C = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(localData, subM, subN, false, useGpu_);
      MatrixPtr A = Matrix::create(wgtData, subK, subM, false, useGpu_);
      C->mul(A, B);  // mul

      // clear the temporary matrix
      A->clear();
      B->clear();
      C->clear();

      expandInData += subK * subN;
      localData += subM * subN;
      wgtData += subK * subM;
    }

    // shrink one frame outGrad
    MatrixPtr oneTmp = Matrix::create(
        expandInput_->getData(), subK * groups_[inpIdx], subN, false, useGpu_);
    MatrixPtr vTmp = Matrix::create(
        imageData, 1,
        imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel_, false,
        useGpu_);
    vTmp->convShrink(*oneTmp, imgSizeH_[inpIdx], imgSizeW_[inpIdx],
                     channel_, filterSize_[inpIdx],
                     filterSize_[inpIdx], stride_[inpIdx], stride_[inpIdx],
                     padding_[inpIdx], padding_[inpIdx],
                     outputH_[inpIdx], outputW_[inpIdx], 1.0f, 1.0f);
    vTmp->clear();
    oneTmp->clear();

    // move the data-pointer
    imageData += imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel_;
  }
}

void ExpandConvTransLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
  size_t mapW = getSize() / channel_;
  size_t mapH = v->getElementCnt() / mapW;
  MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  vTmp->transpose(transOutValue_, false);  // false means no memory allocation
  vTmp->reshape(transOutValue_->getElementCnt() / channel_, channel_);
  biases->collectBias(*vTmp, 1.0f);
}

void ExpandConvTransLayer::bpropBiases(MatrixPtr v) {
  MatrixPtr biases =
      Matrix::create(biases_->getWGrad()->getData(), 1,
                     biases_->getWGrad()->getElementCnt(), false, useGpu_);
  if (sharedBiases_) {
    bpropSharedBias(biases, v);
  } else {
    biases->collectBias(*v, 1.0f);
  }
  biases->clear();
}

void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr imageGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(imageGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    /* First, calculate the input layers error */
    for (size_t off = 0; off < imageGrad->getHeight(); off++) {
        expandBackOnce(imageGrad, i, off);
    }
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
      bpropWeights(imageGrad, i);
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

void ExpandConvTransLayer::bpropWeights(MatrixPtr v, int inpIdx) {
  MatrixPtr weightGrad = weights_[inpIdx]->getWGrad();
  MatrixPtr outputV = getPrev(inpIdx)->getOutputValue();

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = outputV->getHeight();
  resetExpandInput(subK * groups_[inpIdx], subN);

  real *outputData = outputV -> getData();

  for (size_t n = 0; n < batchSize; n++) {  // frame by frame
    // expand
    expandOneFrame(v, n, inpIdx);
    real *wGradData = weightGrad->getData();
    real *expandInData = expandInput_->getData();

    // expand-mul one-group by one
    for (int g = 0; g < groups_[inpIdx]; g++) {
      MatrixPtr A = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(outputData, subM, subN, true, useGpu_);
      MatrixPtr C = Matrix::create(wGradData, subK, subM, false, useGpu_);
      C->mul(A, B, 1, 1);

      A->clear();
      B->clear();
      C->clear();
      outputData += subM * subN;
      wGradData += subK * subM;
      expandInData += subK * subN;
    }
  }
}


}  // namespace paddle