nce_op.h 17.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        PADDLE_ENFORCE_EQ(
            dist_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistProbs).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAlias) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAlias).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAliasProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAliasProbs).numel() = %d, "
            "Attr(num_total_classes) = %d.",
            dist_alias_probs->numel(), num_total_classes);
126 127 128 129 130 131

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
132 133 134 135 136 137
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
138
    auto sample_labels = context.Output<Tensor>("SampleLabels");
139
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
140 141

    for (int x = 0; x < sample_labels->numel(); x++) {
142 143 144 145 146
      PADDLE_ENFORCE_GE(sample_labels_data[x], 0,
                        "ValueError: Every sample label should be "
                        "non-negative. But received: "
                        "Input(SampleLabels)[%d] = %d",
                        x, sample_labels_data[x]);
147 148
    }

W
wanghaoshuang 已提交
149
    auto sample_out = context.Output<Tensor>("SampleLogits");
150
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
151 152
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
153
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
154 155 156
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
157
    auto out = context.Output<Tensor>("Cost");
158
    T *out_data = out->mutable_data<T>(context.GetPlace());
159
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
160 161 162
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
163 164
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
165
    // forward bias
W
wanghaoshuang 已提交
166
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
167
    if (bias != nullptr) {
168
      const T *bias_data = bias->data<T>();
169
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
170 171 172
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
173
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
174 175 176 177
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
178
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
179 180

    // for remote prefetch
181
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
T
tangwei12 已提交
182 183
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

184
    if (remote_prefetch && !epmap.empty()) {
T
tangwei12 已提交
185 186 187 188 189 190 191 192 193 194 195
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
196 197
      framework::Scope &local_scope = context.scope().NewScope();

Q
Qiao Longfei 已提交
198 199
      auto height_sections =
          context.Attr<std::vector<int64_t>>("height_sections");
T
tangwei12 已提交
200 201
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
202
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
203 204 205 206 207 208 209 210
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

211
      std::vector<int> w_dims = paddle::framework::vectorize<int>(
T
tangwei12 已提交
212 213 214 215 216 217
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
218 219

#ifdef PADDLE_WITH_DISTRIBUTE
H
hong 已提交
220
      auto weight = context.InputNames("Weight").front();
T
tangwei12 已提交
221
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
222 223
                                       weight, false, table_names, epmap,
                                       height_sections, context, local_scope);
T
tangwei12 已提交
224 225 226 227
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
228
#endif
T
tangwei12 已提交
229

T
tangwei12 已提交
230
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
231
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
232 233 234 235 236 237 238 239 240 241 242 243
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
244
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
245 246 247 248 249 250 251 252 253 254 255
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
256
    }
T
tangwei12 已提交
257

W
wanghaoshuang 已提交
258
    // forward cost
259
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
260 261
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
262 263 264 265 266
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
267 268 269
        out_data[i] += w * cost;
      }
    }
270
    delete sampler;
W
wanghaoshuang 已提交
271 272 273
  }
};

Q
QI JUN 已提交
274
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
275 276
class NCEGradKernel : public framework::OpKernel<T> {
 public:
277
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
278
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
279
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
280 281
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
282
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
283
    auto sample_labels = context.Input<Tensor>("SampleLabels");
284
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
285
    auto sample_weight = context.Input<Tensor>("SampleWeight");
286
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
287 288 289
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
290 291
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
292 293 294 295
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
296 297 298

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
299
    Sampler *sampler;
300 301 302 303 304 305 306 307 308 309
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
310 311 312 313
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        PADDLE_ENFORCE_EQ(
            dist_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistProbs).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAlias) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAlias).numel() = %d, Attr(num_total_classes) "
            "= %d.",
            dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(
            dist_alias_probs->numel(), num_total_classes,
            "ShapeError: The number of elements in Input(CustomDistAliasProbs) "
            "should be equal to the number of total classes. But Received: "
            "Input(CustomDistAliasProbs).numel() = %d, "
            "Attr(num_total_classes) = %d.",
            dist_alias_probs->numel(), num_total_classes);
335 336 337 338 339 340

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
341 342 343 344 345 346
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
347
    Tensor sample_grad;  // tmp tensor
348
    T *sample_grad_data =
W
wanghaoshuang 已提交
349 350
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
351
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
352 353 354
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
355
      T o = sample_out_data[i];
356 357
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
358 359
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
360
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
361
    }
362

363 364 365 366 367 368 369 370 371 372
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
391
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
392
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
393
      }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
422
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
423
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
424
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
425
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
426 427 428
            sample_grad_data[i];
      }
    }
429

W
wanghaoshuang 已提交
430
    // get d_x
W
wanghaoshuang 已提交
431
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
432
    if (d_x != nullptr) {
433
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
434
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
435
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
436
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
437
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
438
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
439 440 441
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
442

443
    delete sampler;
W
wanghaoshuang 已提交
444 445 446 447
  }
};
}  // namespace operators
}  // namespace paddle