nce_op.h 15.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104 105 106 107 108 109 110 111 112 113
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
114 115 116 117 118 119
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
120
    auto sample_labels = context.Output<Tensor>("SampleLabels");
121
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
122 123 124 125 126

    for (int x = 0; x < sample_labels->numel(); x++) {
      PADDLE_ENFORCE_GE(sample_labels_data[x], 0, "nce sample label %d", x);
    }

W
wanghaoshuang 已提交
127
    auto sample_out = context.Output<Tensor>("SampleLogits");
128
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
129 130
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
131
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
132 133 134
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
135
    auto out = context.Output<Tensor>("Cost");
136
    T *out_data = out->mutable_data<T>(context.GetPlace());
137
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
138 139 140
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
141 142
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
143
    // forward bias
W
wanghaoshuang 已提交
144
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
145
    if (bias != nullptr) {
146
      const T *bias_data = bias->data<T>();
147
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
148 149 150
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
151
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
152 153 154 155
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
156
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

    if (!epmap.empty()) {
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
173 174
      framework::Scope &local_scope = context.scope().NewScope();

Q
Qiao Longfei 已提交
175 176
      auto height_sections =
          context.Attr<std::vector<int64_t>>("height_sections");
T
tangwei12 已提交
177 178
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
179
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
180 181 182 183 184 185 186 187
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

T
tangwei12 已提交
188 189 190 191 192 193 194
      std::vector<int> w_dims = paddle::framework::vectorize2int(
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
195 196

#ifdef PADDLE_WITH_DISTRIBUTE
T
tangwei12 已提交
197 198 199
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
                                       table_names, epmap, height_sections,
                                       context, local_scope);
T
tangwei12 已提交
200 201 202 203
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
204
#endif
T
tangwei12 已提交
205

T
tangwei12 已提交
206
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
207
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
208 209 210 211 212 213 214 215 216 217 218 219
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
220
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
221 222 223 224 225 226 227 228 229 230 231
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
232
    }
T
tangwei12 已提交
233

W
wanghaoshuang 已提交
234
    // forward cost
235
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
236 237
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
238 239 240 241 242
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
243 244 245
        out_data[i] += w * cost;
      }
    }
246
    delete sampler;
W
wanghaoshuang 已提交
247 248 249
  }
};

Q
QI JUN 已提交
250
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
251 252
class NCEGradKernel : public framework::OpKernel<T> {
 public:
253
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
254
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
255
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
256 257
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
258
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
259
    auto sample_labels = context.Input<Tensor>("SampleLabels");
260
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
261
    auto sample_weight = context.Input<Tensor>("SampleWeight");
262
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
263 264 265
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
266 267
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
268 269 270 271
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
272 273 274

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
275
    Sampler *sampler;
276 277 278 279 280 281 282 283 284 285
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
286 287 288 289 290 291 292 293 294 295 296 297 298
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
299 300 301 302 303 304
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
305
    Tensor sample_grad;  // tmp tensor
306
    T *sample_grad_data =
W
wanghaoshuang 已提交
307 308
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
309
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
310 311 312
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
313
      T o = sample_out_data[i];
314 315
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
316 317
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
318
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
319
    }
320

321 322 323 324 325 326 327 328 329 330
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
349
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
350
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
351
      }
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
380
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
381
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
382
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
383
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
384 385 386
            sample_grad_data[i];
      }
    }
387

W
wanghaoshuang 已提交
388
    // get d_x
W
wanghaoshuang 已提交
389
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
390
    if (d_x != nullptr) {
391
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
392
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
393
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
394
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
395
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
396
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
397 398 399
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
400

401
    delete sampler;
W
wanghaoshuang 已提交
402 403 404 405
  }
};
}  // namespace operators
}  // namespace paddle