Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
3d276277
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3d276277
编写于
11月 08, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add nce op
1. Add nce forward and backward kernel for CPU
上级
83c22816
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
330 addition
and
0 deletion
+330
-0
paddle/operators/nce_op.cc
paddle/operators/nce_op.cc
+120
-0
paddle/operators/nce_op.h
paddle/operators/nce_op.h
+210
-0
未找到文件。
paddle/operators/nce_op.cc
0 → 100644
浏览文件 @
3d276277
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/nce_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
NCEOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
));
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
));
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SampleLogits"
));
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SampleLabels"
));
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
]);
if
(
ctx
->
HasInput
(
"B"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"W"
)[
0
],
ctx
->
GetInputDim
(
"B"
)[
0
]);
}
int
num_sampled_classes
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_sampled_classes"
);
int
num_classes
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_classes"
);
PADDLE_ENFORCE_EQ
(
num_classes
,
ctx
->
GetInputDim
(
"W"
)[
0
]);
PADDLE_ENFORCE_LT
(
num_sampled_classes
,
num_classes
);
// set dims of output(Out)
std
::
vector
<
int64_t
>
out_dims
(
1
);
out_dims
.
push_back
(
x_dims
[
0
]);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims
));
// set dims of output(SampleOut)
std
::
vector
<
int64_t
>
sample_out_dims
(
2
);
sample_out_dims
.
push_back
(
x_dims
[
0
]);
sample_out_dims
.
push_back
(
num_sampled_classes
+
1
);
ctx
->
SetOutputDim
(
"SampleLogits"
,
framework
::
make_ddim
(
sample_out_dims
));
ctx
->
SetOutputDim
(
"SampleLabels"
,
framework
::
make_ddim
(
sample_out_dims
));
}
};
class
NCEOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
NCEOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
""
);
AddInput
(
"Label"
,
""
);
AddInput
(
"W"
,
""
);
AddInput
(
"B"
,
""
);
AddInput
(
"SampleWeight"
,
""
);
AddOutput
(
"Out"
,
""
);
AddOutput
(
"SampleLogits"
,
""
);
AddOutput
(
"SampleLabels"
,
""
);
AddAttr
<
int
>
(
"num_classes"
,
""
);
AddAttr
<
int
>
(
"num_sampled_classes"
,
""
).
SetDefault
(
10
);
AddComment
(
R"DOC(
Expand input(X) according to LOD of input(Y).
)DOC"
);
}
};
class
NCEOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"The input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
auto
w_dims
=
ctx
->
GetInputDim
(
"W"
);
auto
w_grad_name
=
framework
::
GradVarName
(
"W"
);
if
(
ctx
->
HasOutput
(
w_grad_name
))
{
ctx
->
SetOutputDim
(
w_grad_name
,
w_dims
);
}
auto
bias_grad_name
=
framework
::
GradVarName
(
"B"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"B"
);
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
nce
,
ops
::
NCEOp
,
ops
::
NCEOpMaker
,
nce_grad
,
ops
::
NCEOpGrad
);
REGISTER_OP_CPU_KERNEL
(
nce
,
ops
::
NCEKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
nce_grad
,
ops
::
NCEGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/nce_op.h
0 → 100644
浏览文件 @
3d276277
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <random>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
void
PrepareSamples
(
const
framework
::
ExecutionContext
&
context
)
{
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
const
T
*
label_data
=
label
->
data
<
T
>
();
auto
label_dims
=
label
->
dims
();
int
num_classes
=
context
.
Attr
<
int
>
(
"num_classes"
);
// random machine
std
::
random_device
rd
;
std
::
mt19937
rng
(
rd
());
std
::
uniform_int_distribution
<
int
>
rand
(
0
,
num_classes
-
1
);
auto
sample_labels
=
context
.
Output
<
Tensor
>
(
"SampleLabels"
);
auto
sample_labels_dims
=
sample_labels
->
dims
();
int
*
sample_labels_data
=
sample_labels
->
mutable_data
<
int
>
(
context
.
GetPlace
());
int
num_label
=
label_dims
.
size
()
==
2
?
label_dims
[
1
]
:
1
;
for
(
size_t
i
=
0
;
i
<
label_dims
[
0
];
++
i
)
{
int
j
=
0
;
for
(;
j
<
num_label
;
++
j
)
{
sample_labels_data
[
sample_labels_dims
[
1
]
*
i
+
j
]
=
label_data
[
i
*
num_label
+
j
];
}
for
(;
j
<
sample_labels_dims
[
1
];
++
j
)
{
int
id
=
rand
(
rng
);
sample_labels_data
[
sample_labels_dims
[
1
]
*
i
+
j
]
=
id
;
}
}
}
template
<
typename
Place
,
typename
T
>
class
NCEKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PrepareSamples
<
Place
,
T
>
(
context
);
auto
sample_labels
=
context
.
Output
<
Tensor
>
(
"SampleLabels"
);
const
int
*
sample_labels_data
=
sample_labels
->
data
<
int
>
();
auto
sample_out
=
context
.
Output
<
Tensor
>
(
"SampleLogits"
);
T
*
sample_out_data
=
sample_out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
sample_weight
=
context
.
Input
<
Tensor
>
(
"SampleWeight"
);
const
T
*
sample_weight_data
=
nullptr
;
if
(
sample_weight
!=
nullptr
)
{
sample_weight_data
=
sample_weight
->
data
<
T
>
();
}
auto
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
num_smalped_classes
=
context
.
Attr
<
int
>
(
"num_sampled_classes"
);
int
num_classes
=
context
.
Attr
<
int
>
(
"num_classes"
);
int
num_true_class
=
1
;
if
(
label
!=
nullptr
)
{
num_true_class
=
label
->
dims
()[
1
];
}
T
b
=
1.
/
num_classes
*
num_smalped_classes
;
// forward bias
auto
bias
=
context
.
Input
<
Tensor
>
(
"B"
);
if
(
bias
!=
nullptr
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
sample_out_data
[
i
]
=
bias_data
[
sample_labels_data
[
i
]];
}
}
else
{
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
sample_out_data
[
i
]
=
0
;
}
}
// forward mul
auto
input_mat
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"X"
)));
auto
weight_mat
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"W"
)));
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
// sample_out_data[i] += (input_mat.chip((int)(i /
// sample_labels->dims()[1]), 0) * weight_mat.chip(sample_labels_data[i],
// 0)).sum();
Eigen
::
Tensor
<
float
,
0
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>
result
=
(
input_mat
.
chip
((
int
)(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
weight_mat
.
chip
(
sample_labels_data
[
i
],
0
))
.
sum
();
sample_out_data
[
i
]
+=
result
(
0
);
// activation_->forward
sample_out_data
[
i
]
=
(
1
/
1
+
(
sample_out_data
[
i
]));
}
// forward cost
for
(
size_t
i
=
0
;
i
<
sample_labels
->
dims
()[
0
];
++
i
)
{
size_t
j
=
0
;
T
w
=
sample_weight
==
nullptr
?
1
:
sample_weight_data
[
i
];
// for true classes
for
(;
j
<
num_true_class
;
++
j
)
{
T
o
=
sample_out_data
[
i
*
sample_out
->
dims
()[
1
]
+
j
];
T
cost
=
-
log
(
o
/
(
o
+
b
));
out_data
[
i
]
+=
w
*
cost
;
}
// for sampled neg classes
for
(;
j
<
sample_labels
->
dims
()[
1
];
++
j
)
{
T
o
=
sample_out_data
[
i
*
sample_out
->
dims
()[
1
]
+
j
];
T
cost
=
-
log
(
b
/
(
o
+
b
));
out_data
[
i
]
+=
w
*
cost
;
}
}
}
};
template
<
typename
Place
,
typename
T
>
class
NCEGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
sample_out
=
context
.
Input
<
Tensor
>
(
"SampleLogits"
);
const
T
*
sample_out_data
=
sample_out
->
data
<
T
>
();
auto
sample_labels
=
context
.
Input
<
Tensor
>
(
"SampleLabels"
);
const
int
*
sample_labels_data
=
sample_labels
->
data
<
int
>
();
auto
sample_weight
=
context
.
Input
<
Tensor
>
(
"SampleWeight"
);
const
T
*
sample_weight_data
=
nullptr
;
if
(
sample_weight
!=
nullptr
)
{
sample_weight_data
=
sample_weight
->
data
<
T
>
();
}
int
num_smalped_classes
=
context
.
Attr
<
int
>
(
"num_sampled_classes"
);
int
num_classes
=
context
.
Attr
<
int
>
(
"num_classes"
);
int
num_true_class
=
1
;
if
(
label
!=
nullptr
)
{
num_true_class
=
label
->
dims
()[
1
];
}
T
b
=
1.
/
num_classes
*
num_smalped_classes
;
Tensor
sample_grad
;
// tmp tensor
T
*
sample_grad_data
=
sample_grad
.
mutable_data
<
T
>
(
sample_labels
->
dims
(),
context
.
GetPlace
());
// backward cost
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
T
o
=
sample_out_data
[
i
];
T
w
=
sample_weight
==
nullptr
?
1
:
sample_weight_data
[
i
/
sample_labels
->
dims
()[
1
]];
sample_grad_data
[
i
]
=
(
i
%
sample_labels
->
dims
()[
1
])
<
num_true_class
?
-
w
*
b
/
(
o
*
(
o
+
b
))
:
w
/
(
o
+
b
);
// sigmoid->backward
sample_grad_data
[
i
]
=
(
o
>
0
)
?
sample_grad_data
[
i
]
:
((
o
<
0
)
?
-
sample_grad_data
[
i
]
:
0
);
}
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"B"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
];
}
}
// get d_w
auto
d_w
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"W"
));
if
(
d_w
!=
nullptr
)
{
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_w
);
auto
x_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"X"
)));
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_w_matrix
.
chip
(
sample_labels_data
[
i
],
0
)
=
x_matrix
.
chip
((
int
)(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
sample_grad_data
[
i
];
}
}
// get d_x
auto
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
!=
nullptr
)
{
auto
d_x_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_x
);
auto
w_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"W"
)));
for
(
size_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_x_matrix
.
chip
((
int
)(
i
/
sample_labels
->
dims
()[
1
]),
0
)
+=
w_matrix
.
chip
(
sample_labels_data
[
i
],
0
)
*
sample_grad_data
[
i
];
}
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录