engine.py 68.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import copy
17
import logging
18
import random
19
import numbers
20
import numpy as np
21 22 23
from collections import defaultdict

import paddle
24
import paddle.utils as utils
25
import paddle.distributed.auto_parallel.utils as auto_utils
26

Z
zhaoyingli 已提交
27
from paddle import fluid, static
28
from paddle.metric import Metric
29
from paddle.static import InputSpec
30
from paddle.fluid import core
31
from paddle.fluid import Variable
32
from paddle.fluid.layers.utils import flatten
33
from paddle.fluid.executor import global_scope, _to_name_str
34
from paddle.fluid.framework import Operator, _non_static_mode
35 36
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
37
from paddle.distributed import fleet
38

Z
zhaoyingli 已提交
39
from .callbacks import config_callbacks
40
from .converter import Converter
41
from .helper import ProgramHelper
42
from .cluster import Cluster, get_default_cluster
43 44
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
45 46
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
47 48 49 50
from .dist_loader import (
    DistributedDataLoaderFromGenerator,
    DistributedDataLoader,
)
51
from .strategy import Strategy
52
from .process_group import new_process_group, get_all_process_groups
53
from .dist_context import DistributedContext, get_default_distributed_context
54
from .interface import CollectionNames, get_collection
55
from .cost.estimate_cost import get_cost_from_engine
56

57 58
from ..utils.log_utils import get_logger

59 60

class Engine:
61
    """
62 63
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
64 65 66 67 68 69 70
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
71 72
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
89
            from paddle.distributed.fleet import auto
90 91 92 93 94 95 96 97 98 99
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
100
            loss = paddle.nn.CrossEntropyLoss()
101 102 103 104
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

105 106
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
107 108 109
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
110
            # evaluate
111 112 113 114 115 116 117
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
118
            # load
119 120 121
            engine.load("./my_model")

    """
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
138 139 140 141
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
142 143 144 145 146 147 148 149 150

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
151 152 153
        self._loss = loss

        if optimizer and not isinstance(
154 155 156
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
157 158
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
159 160
                " or `paddle.fluid.optimizer.Optimizer`."
            )
161
        self._optimizer = auto_utils.validate_opt(optimizer)
162
        self._orig_optimizer = copy.deepcopy(self._optimizer)
163 164

        metrics = metrics or []
165
        for metric in auto_utils.to_list(metrics):
166 167 168 169 170 171
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
172
        self._metrics = auto_utils.to_list(metrics)
173 174 175 176 177 178 179 180 181 182 183 184 185

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

186
        self._logger = get_logger(logging.INFO)
187
        if os.getenv("POD_NAME"):
188 189
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
190
            )
191
            fleet.init(is_collective=True)
192

193
        self._executor = None
194 195 196
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
197

198 199
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
200
        self._orig_dist_context = get_default_distributed_context()
201
        self._dist_contexts = {}
202 203
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
204 205
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
206 207 208 209
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
210
        self._planners = {}
211 212
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
213 214
            "train": False,
            "eval": False,
215
            "predict": False,
216
        }
217 218 219 220
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
221
        self._losses = []
222

223
        self._mode = None
224 225
        self._skip_build = False
        self._outside_dataloader = False
226
        self._planned_mode = None
227 228
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
229

Z
zhaoyingli 已提交
230 231
        self.history = None

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
250
            raise TypeError(
251 252 253 254
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
255 256
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
257 258

        num_shards = self._strategy.dataset.num_shards
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
274
                _adjust_item_spec(num_shards, spec)
275 276 277 278
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
279
            elif isinstance(item, numbers.Number):
280
                specs.append(InputSpec([batch_size], type(item), name))
281 282 283 284 285 286
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

303
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
304
        if _non_static_mode() or self._dygraph_mode:
305 306
            raise ValueError("Only support static graph mode.")

307
        if inputs_spec:
308 309 310 311 312
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
313 314 315 316 317 318 319 320 321
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
322
        if labels_spec:
323 324 325 326 327
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
328 329 330 331 332 333 334 335 336 337
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

338 339 340 341 342 343 344 345 346
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
347 348 349
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
367 368 369
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
399
        if user_feeds is not None:
400 401 402 403 404
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
405 406
            for name, data in user_feeds.items():
                feeds[name] = data
407 408
        return feeds

409
    def _prepare_fetch(self, user_fetches, mode):
410
        if user_fetches is not None:
411 412 413 414 415
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
416
        fetch_names = []
417
        fetch_indices = []
418

419 420
        def _process_fetch_group(group_name, var_list):
            group_indices = []
421
            for var in var_list:
422 423 424 425 426 427
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
428 429
            if not group_indices:
                fetch_names.append([])
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

447 448 449 450 451 452 453 454 455 456
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
457
        logs = {}
458
        if epoch is not None:
Z
zhaoyingli 已提交
459
            logs["epoch"] = epoch
460
        if step is not None:
Z
zhaoyingli 已提交
461
            logs["step"] = step + 1
462
        if lr is not None:
Z
zhaoyingli 已提交
463
            logs["lr"] = lr
464 465
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
466
            # logging loss
467
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
468
            assert len(loss_indices) <= 1
469
            for idx in loss_indices:
Z
zhaoyingli 已提交
470
                logs["loss"] = outs[idx][0]
471
            group_idx += 1
Z
zhaoyingli 已提交
472
            # logging metrics
473 474 475 476 477 478 479 480 481 482
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
483
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
484
                            logs[metric.name()[i]] = res
485
                    group_idx += 1
Z
zhaoyingli 已提交
486 487 488 489 490 491 492
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
493 494
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
495 496 497
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
        for name, var in collect_fetches:
498 499
            if var.name in fetch_names:
                idx = fetch_names.index(var.name)
Z
zhaoyingli 已提交
500 501 502
                logs_fetch[name or var.name] = outs[idx]
        logs["fetches"] = logs_fetch
        return logs
503

504 505 506 507 508 509 510 511 512 513 514
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

515
    def _build(self, mode):
516
        if _non_static_mode() or self._dygraph_mode:
517
            paddle.disable_static()
518 519 520
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

521
            self.program_helper = ProgramHelper(
522 523 524 525 526
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
527
            )
528
            # build forward main program
529
            self.program_helper.build_program(mode)
530

531 532 533
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
534

535 536
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
537
            outputs = self.program_helper.output_vars
538
            self._losses = self.program_helper.loss_vars
539
            metrics = self.program_helper.metric_vars
540

541
            paddle.enable_static()
542 543 544 545 546 547
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

548
            outputs = []
549
            metrics = []
550
            self._losses = []
551 552
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
553
            if not self._skip_build:
554 555 556
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
557 558 559 560 561 562 563
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

564
                    outputs = auto_utils.to_list(self._model(*self._inputs))
565

566
                    if mode != "predict" and self._loss:
567 568 569 570 571
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
572
                        self._losses = auto_utils.to_list(
573 574
                            self._loss(*(outputs + self._labels))
                        )
575

576
                    if mode != "predict" and (outputs or self._labels):
577 578
                        for metric in self._metrics:
                            metrics.append(
579
                                auto_utils.to_list(
580 581
                                    metric.compute(*(outputs + self._labels))
                                )
582
                            )
Z
zhaoyingli 已提交
583
            elif mode == "train":
584 585 586
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
587
                self._losses = auto_utils.to_list(self._loss)
588 589 590 591 592 593 594

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
595 596 597 598 599 600
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
601

602
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
603 604 605

        fetch_vars = {
            "outputs": flatten(outputs),
606
            "loss": self._losses,
607
            "metrics": metrics,
608 609
        }

610 611 612
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

613
        self._set_recompute_ckpts()
614
        self._dist_contexts[mode] = DistributedContext(
615 616 617
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
618 619 620 621 622 623 624 625 626 627 628
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
629 630 631 632 633
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
634
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
635
        self._fwd_main_progs[mode] = serial_main_prog.clone()
636

637 638 639
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
640

641 642 643 644 645 646 647 648
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
649 650

        from .tuner.optimization_tuner import OptimizationTuner
651 652 653 654 655 656 657 658 659 660

        self._optimization_tuner = OptimizationTuner(
            self._tuning.to_dict(),
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
661 662 663

        self._optimization_tuner.tune()

664
        if self._tuning.run_after_tuning:
665 666
            # update the strategy
            self._dist_contexts[
667 668
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
669

670 671 672 673 674 675
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

676 677
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
678

679 680 681 682
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
683
        # TODO: check this feed_list
684 685 686 687 688
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

689 690
        self._dp_world_sizes = []
        self._dp_ranks = []
691
        for feed_var in feed_list:
692
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
693
                self._cur_rank, feed_var, self._dist_contexts[mode]
694
            )
695 696
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
697

698
    def _parallel(self, mode, all_ranks=False):
699 700 701
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
702 703 704
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
705 706 707 708
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
709 710

    def _init_dist_context(self, mode):
711
        # Init dist_context['mode'] with the first planned dist_context
712 713 714 715 716 717 718 719 720 721
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
722 723 724 725 726 727 728 729
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
730 731 732
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
733
        # Get the current content from the distributed context
734
        self._serial_main_progs[mode] = self._dist_contexts[
735 736
            mode
        ].serial_main_program
737
        self._serial_startup_progs[mode] = self._dist_contexts[
738 739
            mode
        ].serial_startup_program
740
        self._dist_main_progs[mode] = self._dist_contexts[
741 742
            mode
        ].dist_main_programs
743
        self._dist_startup_progs[mode] = self._dist_contexts[
744 745
            mode
        ].dist_startup_programs
746 747
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
748
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
749

750 751 752 753
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
754 755
            cur_rank = self._cur_rank
            # NOTE: After the implementation of the unified dynamic and static communication group initialization mode in the future, the initialization logic of full mode will be removed because port occupation error may occur.
756
            if self._strategy.auto_mode == "full":
757 758 759
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
760 761
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
762
                    if cur_rank not in process_group.ranks:
763 764
                        continue
                    process_group.instantiate()
765

766 767 768
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
769

770 771 772 773 774
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

775
        if self._dygraph_mode:
776 777 778
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
779

780
        if self._executor is None:
781
            self._executor = paddle.static.Executor(place)
782 783 784 785 786 787 788 789 790 791
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
792

793
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
794 795 796
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
797 798

        if self._strategy.reinit:
Z
zhaoyingli 已提交
799
            self._logger.info("NOTE: parameters will be re-initialized.")
800 801 802
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
821 822 823 824 825 826 827 828
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
829
                more than two items, train_sample_split specifies how to split these items into
830
                input and label. The items before it are input and the left are label. Default: None.
831
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
832 833 834
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
835
                is executed in one epoch before stating the next one. If None, it is equal to
836 837
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
838
                evaluation at the end of epoch. No evaluation will be done if set to None.
839
                Default: None. (Unsupported for now)
840
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
841 842
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
843 844
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
845 846 847
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
848 849
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
850 851 852 853
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
854
                0. Default None.
855 856 857 858 859 860 861 862 863 864 865 866
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
867
                from paddle.distributed.fleet import auto
868 869 870 871 872 873 874 875 876
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
877
                loss = paddle.nn.CrossEntropyLoss()
878 879 880 881
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

882
                engine = auto.Engine(model, loss, optimizer, metrics)
883 884 885 886
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
887 888
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
889 890
            train_data, train_sample_split, batch_size
        )
891 892
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
893
        else:
894
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
895

896 897 898 899 900 901 902
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
903 904
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
905

906
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
933 934
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
935 936
                except core.EOFException:
                    break
937
                lr = auto_utils.get_lr(self._optimizer)
938 939 940 941 942 943 944 945 946
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
947 948 949
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
950 951 952 953 954 955 956 957 958 959
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
960
                val_logs = {
961
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
962 963 964 965 966 967 968 969 970 971
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
972

973 974 975 976 977 978 979 980 981 982 983
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
984 985 986 987
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
988 989
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
990
                to be a (input, label) pair by default and has two items. If each sample has
991
                more than two items, valid_sample_split specifies how to split these items into
992
                input and label. The items before it are input and the left are label. Default: None.
993
            batch_size (int, optional): The batch size of valid_data. The user's data will
994
                be used directly without batching if set to None. Default: 1.
995 996
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
997 998 999 1000 1001
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1002
                during evaluating. Default: None. (Unused for now)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1013
                from paddle.distributed.fleet import auto
1014 1015 1016 1017 1018 1019 1020 1021 1022
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1023
                loss = paddle.nn.CrossEntropyLoss()
1024 1025
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1026
                engine = auto.Engine(model, loss, metrics=metrics)
1027 1028 1029
                engine.evaluate(valid_dataset, batch_size=64)

        """
1030 1031
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1032 1033
            valid_data, valid_sample_split, batch_size
        )
1034 1035
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1036
        else:
1037
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1038

1039 1040 1041 1042 1043 1044
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1045 1046
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1047

1048
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1049

Z
zhaoyingli 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1060 1061 1062
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1063
        logs = {}
1064
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1065
            cbks.on_batch_begin('eval', step, logs)
1066
            try:
1067 1068
                outs = self._executor.run(
                    self.main_program,
1069
                    fetch_list=fetch_names,
1070
                    use_program_cache=self._strategy.use_cache,
1071 1072
                    return_numpy=self._strategy.return_numpy,
                )
1073
            except core.EOFException:
1074
                break
1075 1076 1077
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1078 1079
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1080
        self._reset_metrics()
Z
zhaoyingli 已提交
1081
        return logs
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1093 1094 1095 1096 1097 1098 1099
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1100
                more than two items, test_sample_split specifies how to split these items into
1101 1102 1103
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1104 1105
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1122
                from paddle.distributed.fleet import auto
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1133
                engine = auto.Engine(model)
1134 1135
                engine.predict(valid_dataset, batch_size=64)
        """
1136 1137
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1138 1139
            test_data, test_sample_split, batch_size
        )
1140 1141
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1142
        else:
1143
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1144

1145 1146 1147 1148 1149 1150
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1151 1152
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1153

1154
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1155

Z
zhaoyingli 已提交
1156 1157 1158 1159 1160
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1161
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1162
            cbks.on_batch_begin('predict', step, logs)
1163
            try:
1164 1165
                outs = self._executor.run(
                    self.main_program,
1166
                    fetch_list=fetch_names,
1167
                    use_program_cache=self._strategy.use_cache,
1168 1169
                    return_numpy=self._strategy.return_numpy,
                )
1170
            except core.EOFException:
1171
                break
1172 1173 1174
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1175 1176 1177 1178 1179
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1197 1198 1199
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1200 1201
            dataset, sample_split, batch_size
        )
1202 1203
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1204
        else:
1205
            self._switch_mode(self._mode)
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1220 1221
            steps_per_epoch=steps_per_epoch,
        )
1222 1223
        return dataloader

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1239 1240 1241
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1242 1243
            dataset, sample_split, batch_size
        )
1244 1245 1246 1247
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1260 1261
            collate_fn=collate_fn,
        )
1262 1263
        return dataloader

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1274 1275
        if mode is not None:
            self.to_mode(mode)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1292 1293
        if inputs or labels:
            self._skip_build = True
1294 1295
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1296
            )
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1308 1309 1310
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1311

1312 1313 1314 1315 1316 1317 1318
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1319
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1320 1321 1322 1323
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1324 1325 1326 1327
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1328
            self._prepare_reader()
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1339
        return logs
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1357

1358
        if self._strategy.gradient_merge and batch_size is not None:
1359 1360 1361 1362 1363
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1364
            batch_size //= self._k_steps
1365

1366 1367
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1368
        dist_main_block = dist_main_prog.global_block()
1369

1370 1371 1372 1373
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1374 1375
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1376 1377 1378 1379
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1380 1381 1382 1383
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1384 1385

        # insert read op at the end of program
1386
        places = paddle.static.cuda_places()
1387
        with static.program_guard(dist_main_prog, dist_startup_prog):
1388
            dataloader = DistributedDataLoader(
1389
                dataset,
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1405
                data_parallel_world_size=self._dp_world_sizes,
1406 1407
                data_parallel_rank=self._dp_ranks,
            )
1408

1409 1410
        return dataloader

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1425 1426

        if self._strategy.gradient_merge and batch_size is not None:
1427 1428 1429 1430 1431
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1471 1472
                data_parallel_rank=self._dp_ranks,
            )
1473 1474 1475 1476 1477 1478
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1479 1480
            tune_data, tune_sample_split, batch_size
        )
1481 1482
        self._optimization_tuning(self._mode, tune_data, batch_size)

1483
    def _validate_spec(self, specs):
1484
        specs = auto_utils.to_list(specs)
1485
        self._k_steps = self._strategy.gradient_merge.k_steps
1486 1487
        if specs is not None:
            for i, spec in enumerate(specs):
1488 1489 1490 1491
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1492 1493
                if spec.name is None:
                    raise ValueError(
1494 1495 1496 1497
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1498
                if self._k_steps > 1:
1499
                    shape = list(spec.shape)
1500 1501 1502 1503 1504
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1505
                    shape[0] //= self._k_steps
1506
                    spec.shape = shape
1507 1508 1509
        return specs or []

    def _validate_vars(self, vars):
1510
        vars = auto_utils.to_list(vars)
1511 1512 1513 1514 1515
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1516

1517 1518 1519 1520
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1521 1522 1523 1524
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

1525
        recompute = self._strategy.recompute
1526 1527

        # extract ckpts by specific model
1528
        if isinstance(self._model, paddle.nn.Layer):
1529 1530 1531 1532 1533 1534
            if hasattr(
                self._model, "gpt"
            ) and self._model.__class__.__name__ in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]:
1535
                exact_ckpts = self._model.gpt.checkpoints
1536
            else:
1537
                exact_ckpts = recompute.checkpoints
1538
        else:
1539
            exact_ckpts = recompute.checkpoints
1540 1541

        # modify strategy
1542 1543
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
1544
            logs = {
1545
                'Model Class': self._model.__class__.__name__,
1546
                'Applied Recompute ckpts': exact_ckpts,
1547 1548 1549
            }
            self._logger.info(logs)

1550 1551 1552 1553
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1554 1555 1556
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1557
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1558 1559
        return metrics_name

1560
    def _switch_mode(self, mode):
1561 1562 1563
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1564
        self.to_mode(mode)
Z
zhaoyingli 已提交
1565
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1566

1567
    def to_mode(self, mode):
1568 1569 1570 1571 1572
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1573 1574
        self._mode = mode

1575 1576 1577
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1578
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1579 1580 1581 1582 1583
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1584 1585
        """
        Saves the model, parameters, optimizer state to path.
1586 1587 1588 1589 1590 1591 1592
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1593
                for inference only. If `training` is set to True, the optimizer state
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1606
                from paddle.distributed.fleet import auto
1607 1608 1609 1610 1611 1612 1613 1614 1615
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1616
                loss = paddle.nn.CrossEntropyLoss()
1617 1618 1619 1620
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1621
                engine = auto.Engine(model, loss, optimizer, metrics)
1622 1623 1624 1625
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1626

1627
        """
1628
        if training:
Z
zhaoyingli 已提交
1629 1630 1631 1632
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1633 1634 1635 1636 1637 1638
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1639
        else:
Z
zhaoyingli 已提交
1640 1641 1642 1643
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1644 1645 1646 1647 1648 1649 1650
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1651

1652 1653 1654 1655 1656 1657
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1658
                optimizer states.
1659 1660 1661
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1662
                mismatch shape). Default: True.
1663
            load_optimizer (bool, optional): If True, the stored optimizer
1664
                states is restored. Otherwise, the optimizer states is initialized
1665
                from scratch. Default: True.
1666 1667 1668 1669 1670 1671 1672 1673 1674

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1675
                from paddle.distributed.fleet import auto
1676 1677 1678 1679 1680 1681 1682 1683 1684
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1685
                loss = paddle.nn.CrossEntropyLoss()
1686 1687 1688 1689
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1690
                engine = auto.Engine(model, loss, optimizer, metrics)
1691 1692 1693 1694 1695
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1696

1697 1698 1699
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1700 1701
            path, load_optimizer
        )
1702
        return self._state_dict, self._dist_attr
1703

1704
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1715
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1716 1717 1718 1719 1720 1721 1722

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1723
            self._logger.info(
1724 1725 1726 1727 1728
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1729 1730 1731
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1732 1733
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1734
                    mode, list(self._has_prepared.keys())
1735 1736
                )
            )
1737 1738
        self.to_mode(mode)

1739 1740 1741
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1742 1743 1744 1745 1746
            self._build(mode)
            self._plan(mode)
        else:
            if _non_static_mode() or self._dygraph_mode:
                raise ValueError(
1747 1748 1749 1750 1751
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1752
                )
1753 1754 1755 1756 1757 1758 1759 1760
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1761 1762 1763 1764 1765 1766

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1767 1768
    @property
    def main_program(self):
1769
        return self._dist_main_progs[self._mode][self._cur_rank]
1770 1771 1772

    @property
    def startup_program(self):
1773
        return self._dist_startup_progs[self._mode][self._cur_rank]
1774 1775 1776

    @property
    def dist_context(self):
1777
        return self._dist_contexts[self._mode]
1778 1779 1780

    @property
    def serial_main_program(self):
1781
        return self._serial_main_progs[self._mode]
1782 1783 1784

    @property
    def serial_startup_program(self):
1785
        return self._serial_startup_progs[self._mode]
1786 1787 1788

    @property
    def fetch_vars(self):
1789
        return self._fetch_vars[self._mode]
1790 1791 1792

    @property
    def inputs(self):
1793
        return self._inputs
1794 1795 1796

    @property
    def labels(self):
1797
        return self._labels