Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
134f9c3e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
134f9c3e
编写于
9月 16, 2022
作者:
J
JZ-LIANG
提交者:
GitHub
9月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Auto Parallel] Bugfix allreduce fuse for MP (#46086)
* bugfix * bugfix * typos fixed
上级
4fba3d5e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
55 addition
and
54 deletion
+55
-54
python/paddle/distributed/auto_parallel/engine.py
python/paddle/distributed/auto_parallel/engine.py
+40
-40
python/paddle/distributed/auto_parallel/interface.py
python/paddle/distributed/auto_parallel/interface.py
+9
-8
python/paddle/distributed/passes/auto_parallel_data_parallel_optimization.py
...ibuted/passes/auto_parallel_data_parallel_optimization.py
+6
-6
未找到文件。
python/paddle/distributed/auto_parallel/engine.py
浏览文件 @
134f9c3e
...
...
@@ -54,8 +54,8 @@ from .interface import _get_fetches
class
Engine
:
"""
An Engine object can provide the full power of auto parallel to users.
With the help of it, users can easily obtain the abilities of the
An Engine object can provide the full power of auto parallel to users.
With the help of it, users can easily obtain the abilities of the
distributed training and inference. It also support the dynamic graph and
static graph at the same time.
...
...
@@ -63,8 +63,8 @@ class Engine:
model (paddle.nn.Layer, optional): The model is an instance of
paddle.nn.Layer.
loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
instance or any callable function taken the predicted values and
ground truth values as input. It can be None when there is no loss.
instance or any callable function taken the predicted values and
ground truth values as input. It can be None when there is no loss.
Default: None.
optimizer (Optimizer|None, optional): The optimizer need to be set in training
and should be None in eval and predict mode. Default: None.
...
...
@@ -92,17 +92,17 @@ class Engine:
valid_dataset = MNIST(mode='test', transform=transform)
model = paddle.vision.models.LeNet()
loss = paddle.nn.CrossEntropyLoss()
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
metrics = paddle.metric.Accuracy(topk=(1, 2))
engine = auto.Engine(model, loss, optimizer, metrics)
# fit
engine = auto.Engine(model, loss, optimizer, metrics)
# fit
engine.fit(train_dataset,
epochs=2,
batch_size=64)
# evaluate
# evaluate
engine.evaluate(valid_dataset,
batch_size=64)
# predict
...
...
@@ -110,7 +110,7 @@ class Engine:
batch_size=64)
# save
engine.save("./my_model")
# load
# load
engine.load("./my_model")
"""
...
...
@@ -502,32 +502,32 @@ class Engine:
train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
train_sample_split (int, optional): Each sample of the train dataset is assumed
to be a (input, label) pair by default and has two items. If each sample has
more than two items, train_sample_split specifies how to split these items into
more than two items, train_sample_split specifies how to split these items into
input and label. The items before it are input and the left are label. Default: None.
batch_size (int, optional): The batch size of train_data and valid_data if provided.
batch_size (int, optional): The batch size of train_data and valid_data if provided.
The user's data will be used directly without batching if set to None. Default: 1.
epochs (int, optional): The number of epochs to train the model. Default: 1.
steps_per_epoch (int, optional): The total number of steps (batches of samples)
is executed in one epoch before stating the next one. If None, it is equal to
is executed in one epoch before stating the next one. If None, it is equal to
the number samples in your dataset divided by the batch size. Default: None.
valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
evaluation at the end of epoch. No evaluation will be done if set to None.
evaluation at the end of epoch. No evaluation will be done if set to None.
Default: None. (Unsupported for now)
valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
how many training epochs before a new evaluation is performed. Default: 1.
valid_sample_split (int, optional): Only relevant if valid_data is provided.
Each sample of the valid dataset is assumed to be a (input, label) pair
by default and has two items. If each sample has more than two items,
Each sample of the valid dataset is assumed to be a (input, label) pair
by default and has two items. If each sample has more than two items,
valid_sample_split specifies how to split these items into input and label.
The items before it are input and the left are label. Default: None.
valid_steps (int, optional): Only relevant if valid_data is provided.
It is the total number of steps (batches of samples) to draw before
stopping validation at the end of every epoch. If None, validation will run until the
It is the total number of steps (batches of samples) to draw before
stopping validation at the end of every epoch. If None, validation will run until the
`valid_data` dataset is exhausted. The validation will start from the
beginning of the dataset at each epoch. Default: None.
collate_fn(callable, optional): function to generate mini-batch data by merging
the sample list, None for only stack each fields of sample in axis
0. Default None.
0. Default None.
callbacks (Callback|None, optional): A list of `Callback` instances to apply
during training. Default: None. (Unused for now)
...
...
@@ -550,12 +550,12 @@ class Engine:
train_dataset = MNIST(mode='train', transform=transform)
model = paddle.vision.models.LeNet()
loss = paddle.nn.CrossEntropyLoss()
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
metrics = paddle.metric.Accuracy(topk=(1, 2))
engine = auto.Engine(model, loss, optimizer, metrics)
engine = auto.Engine(model, loss, optimizer, metrics)
engine.fit(train_dataset,
epochs=2,
batch_size=64)
...
...
@@ -636,15 +636,15 @@ class Engine:
Evaluate the loss and metrics of the model on evaluation data.
Args:
eval
_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
eval
_sample_split (int, optional): Each sample of the eval dataset is assumed
valid
_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
valid
_sample_split (int, optional): Each sample of the eval dataset is assumed
to be a (input, label) pair by default and has two items. If each sample has
more than two items,
eval_sample_split specifies how to split these items into
more than two items,
valid_sample_split specifies how to split these items into
input and label. The items before it are input and the left are label. Default: None.
batch_size (int, optional): The batch size of
eval
_data. The user's data will
batch_size (int, optional): The batch size of
valid
_data. The user's data will
be used directly without batching if set to None. Default: 1.
steps (int, optional): It is the total number of steps (batches of samples) to draw before
stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
steps (int, optional): It is the total number of steps (batches of samples) to draw before
stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
The evaluation will start from the beginning of the dataset in each run. Default: None.
collate_fn(callable, optional): function to generate mini-batch data by merging
the sample list, None for only stack each fields of sample in axis
...
...
@@ -671,10 +671,10 @@ class Engine:
valid_dataset = MNIST(mode='test', transform=transform)
model = paddle.vision.models.LeNet()
loss = paddle.nn.CrossEntropyLoss()
loss = paddle.nn.CrossEntropyLoss()
metrics = paddle.metric.Accuracy(topk=(1, 2))
engine = auto.Engine(model, loss, metrics=metrics)
engine = auto.Engine(model, loss, metrics=metrics)
engine.evaluate(valid_dataset, batch_size=64)
"""
...
...
@@ -745,12 +745,12 @@ class Engine:
test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
test_sample_split (int, optional): Each sample of the test dataset is assumed
to be a (input, label) pair by default and has two items. If each sample has
more than two items, test_sample_split specifies how to split these items into
more than two items, test_sample_split specifies how to split these items into
input and label. The items before it are input and the left are label. Default: None.
batch_size (int, optional): The batch size of test_data. The user's data will
be used directly without batching if set to None. Default: 1.
steps (int, optional): It is the total number of steps (batches of samples) to draw before
stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
steps (int, optional): It is the total number of steps (batches of samples) to draw before
stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
The predict will start from the beginning of the dataset in each run. Default: None.
collate_fn(callable, optional): function to generate mini-batch data by merging
the sample list, None for only stack each fields of sample in axis
...
...
@@ -778,7 +778,7 @@ class Engine:
model = paddle.vision.models.LeNet()
engine = auto.Engine(model)
engine = auto.Engine(model)
engine.predict(valid_dataset, batch_size=64)
"""
self
.
mode
=
'predict'
...
...
@@ -1013,8 +1013,8 @@ class Engine:
program
.
set_state_dict
(
state_dict
)
def
save
(
self
,
path
,
training
=
True
):
"""
Saves the model, parameters, optimizer state to path.
"""
Saves the model, parameters, optimizer state to path.
If `training` is set to False, only inference model will be saved.
Args:
...
...
@@ -1045,12 +1045,12 @@ class Engine:
train_dataset = MNIST(mode='train', transform=transform)
model = paddle.vision.models.LeNet()
loss = paddle.nn.CrossEntropyLoss()
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
metrics = paddle.metric.Accuracy(topk=(1, 2))
engine = auto.Engine(model, loss, optimizer, metrics)
engine = auto.Engine(model, loss, optimizer, metrics)
engine.fit(train_dataset,
epochs=1,
batch_size=64)
...
...
@@ -1084,7 +1084,7 @@ class Engine:
Args:
path (str): The prefix of files storing the model states and
optimizer states.
optimizer states.
strict (bool, optional): Whether to skip the loading of mismatch
parameter or raise an error when mismatch happens (not found
the parameter in file storing model states of or receives a
...
...
@@ -1111,12 +1111,12 @@ class Engine:
train_dataset = MNIST(mode='train', transform=transform)
model = paddle.vision.models.LeNet()
loss = paddle.nn.CrossEntropyLoss()
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
metrics = paddle.metric.Accuracy(topk=(1, 2))
engine = auto.Engine(model, loss, optimizer, metrics)
engine = auto.Engine(model, loss, optimizer, metrics)
engine.fit(train_dataset,
epochs=1,
batch_size=64)
...
...
python/paddle/distributed/auto_parallel/interface.py
浏览文件 @
134f9c3e
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle.fluid
import
core
from
.process_mesh
import
ProcessMesh
from
.process_mesh
import
get_current_process_mesh
...
...
@@ -31,11 +32,11 @@ def shard_tensor(x, process_mesh=None, shard_spec=None):
x (Tensor): the tensor to be sharded.
process_mesh (ProcessMesh, optional): An instance of ProcessMesh describes a mesh
topology of the used logical processes where the tensor is sharded. If it is None,
the found current process mesh will be used. And an error will be raised if the
the found current process mesh will be used. And an error will be raised if the
current process mesh cannot be found. Default: None.
shard_spec (list, optional): a list to describe the sharding mapping between `x` and `process_mesh`,
which means the dimension `i` of `x` is split across the dimension `shard_spec[i]` of `process_mesh`,
where `None` means that tensor dimension is not split. For example, given a tensor wih
where `None` means that tensor dimension is not split. For example, given a tensor wih
the shape [6, 12] and a process mesh with the shape [2, 3] and the dimension names ["x", "y"]:
If `shard_spec=["x", "y"]`, each shard of the tensor will have a shape [3, 4];
If `shard_spec=["y", "x"]`, each shard of the tensor will have a shape [2, 6];
...
...
@@ -48,13 +49,13 @@ def shard_tensor(x, process_mesh=None, shard_spec=None):
In the above example, the `shard_spec=None` is same as 'shard_spec=[None, None]'. Defaults: None.
Returns:
Tensor: the tensor `x` annotated with sharding information.
Tensor: the tensor `x` annotated with sharding information.
Examples:
.. code-block:: python
import paddle
import paddle.distributed.auto_parallel as auto
import paddle.distributed.auto_parallel as auto
mesh = auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"])
x = paddle.ones([4, 6])
...
...
@@ -111,13 +112,13 @@ def shard_op(op, process_mesh=None, in_shard_specs=None, out_shard_specs=None):
in_shard_specs (list of list, optional): a list of list to describe the sharding specifications
for the inputs. Each item of `in_shard_specs` is a `shard_spec` between the correspoinding input
and `process_mesh`. If one item is None, the cooresponding input is replicated across all processes
If it is None, all inputs are replicated accross all processes. Note that the lenght of the
If it is None, all inputs are replicated accross all processes. Note that the lenght of the
`in_shard_specs` should be equal to the actual number of inputs when calling this operation.
Default: None.
out_shard_specs (list of list, optional): a list of list to describe the sharding specifications
for the outputs. Each item of `out_shard_specs` is a `shard_spec` between the correspoinding output
and `process_mesh`. If one item is None, the cooresponding output is replicated across all processes
If it is None, all outputs are replicated accross all processes. Note that the lenght of the
If it is None, all outputs are replicated accross all processes. Note that the lenght of the
`in_shard_specs` should be equal to the actual number of inputs when calling this operation.
Default: None. Default: None.
...
...
@@ -128,8 +129,8 @@ def shard_op(op, process_mesh=None, in_shard_specs=None, out_shard_specs=None):
.. code-block:: python
import paddle
import paddle.distributed.auto_parallel as auto
import paddle.distributed.auto_parallel as auto
x = paddle.ones([4, 6])
y = paddle.zeros([4, 6])
mesh = auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"])
...
...
python/paddle/distributed/passes/auto_parallel_data_parallel_optimization.py
浏览文件 @
134f9c3e
...
...
@@ -111,14 +111,9 @@ class DataParallelOptimizationPass(PassBase):
if
not
self
.
_could_be_fuse
():
return
[]
with
open
(
'./before_program.txt.'
+
str
(
paddle
.
distributed
.
get_rank
()),
'w'
)
as
f
:
f
.
write
(
str
(
default_main_program
()))
grad_group
=
self
.
_group_grads
()
self
.
_update_program
(
grad_group
)
with
open
(
'./after_program.txt.'
+
str
(
paddle
.
distributed
.
get_rank
()),
'w'
)
as
f
:
f
.
write
(
str
(
default_main_program
()))
return
grad_group
def
_analyze_program
(
self
):
...
...
@@ -569,6 +564,11 @@ class GradientsGroup(object):
self
.
remove_scale_op_indices
.
append
(
i
+
1
)
if
len
(
self
.
gradients
)
==
1
:
# TODO Remove this is a temporary hack for Tensor Parallel. the logic
# for find grad_op should be more general.
if
self
.
ops
[
grad_op_idx
].
type
==
"c_allreduce_sum"
:
grad_op_idx
-=
1
grad_op
=
self
.
ops
[
grad_op_idx
]
assert
grad_var
.
name
in
grad_op
.
output_arg_names
,
"grad [{}] should be output of {}"
.
format
(
grad_var
.
name
,
str
(
grad_op
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录