engine.py 66.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import logging
17 18
import random
import numpy as np
19 20 21
from collections import defaultdict

import paddle
22
import paddle.utils as utils
23

Z
zhaoyingli 已提交
24
from paddle import fluid, static
25
from paddle.metric import Metric
26
from paddle.static import InputSpec
27
from paddle.fluid import core
28
from paddle.fluid import Variable
29
from paddle.fluid.layers.utils import flatten
30
from paddle.fluid.executor import global_scope, _to_name_str
31
from paddle.fluid.framework import Operator, _non_static_mode
32 33
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
34
from paddle.distributed import fleet
35

Z
zhaoyingli 已提交
36
from .callbacks import config_callbacks
37
from .converter import Converter
38
from .helper import ProgramHelper
39
from .cluster import Cluster, get_default_cluster
40 41
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
42 43
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
44
from .dist_loader import DistributedDataLoaderFromGenerator, DistributedDataLoader
Z
zhaoyingli 已提交
45
from .utils import to_list, get_dist_attr, get_lr
46
from .process_group import new_process_group, get_all_process_groups
47
from .dist_context import DistributedContext, get_default_distributed_context
48
from .strategy import Strategy
49
from .interface import CollectionNames, get_collection
Z
zhaoyingli 已提交
50
from ..utils.log_utils import get_logger
51 52 53


class Engine:
54
    """
55 56
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
57 58 59 60 61 62 63
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
64 65
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
82
            from paddle.distributed.fleet import auto
83 84 85 86 87 88 89 90 91 92
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
93
            loss = paddle.nn.CrossEntropyLoss()
94 95 96 97
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

98 99
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
100 101 102
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
103
            # evaluate
104 105 106 107 108 109 110
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
111
            # load
112 113 114
            engine.load("./my_model")

    """
115

116 117
    def __init__(self,
                 model=None,
118 119 120
                 loss=None,
                 optimizer=None,
                 metrics=None,
121
                 cluster=None,
122 123 124 125 126 127 128 129 130
                 strategy=None):

        if model and not isinstance(model,
                                    paddle.nn.Layer) and not callable(model):
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model

131 132 133 134 135
        # if loss and not isinstance(loss,
        #                            paddle.nn.Layer) and not callable(loss):
        #     raise TypeError(
        #         "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
        #     )
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        self._loss = loss

        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
                " or `paddle.fluid.optimizer.Optimizer`.")
        self._optimizer = self._validate_opt(optimizer)

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

        if os.getenv("POD_NAME"):
            print("Distribute training by paddle.distributed.launch",
                  flush=True)
            fleet.init(is_collective=True)
169

170
        self._executor = None
171 172 173
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
174

175
        self._logger = get_logger(logging.INFO)
176

177 178
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
179
        self._orig_dist_context = get_default_distributed_context()
180
        self._dist_contexts = {}
181 182
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
183 184 185 186
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
187
        self._planners = {}
188 189
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
190 191 192 193
            "train": False,
            "eval": False,
            "predict": False
        }
194 195 196 197
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
198

199 200
        self._skip_build = False
        self._outside_dataloader = False
201
        self._planned_mode = None
202 203
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
204

Z
zhaoyingli 已提交
205 206
        self.history = None

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
            raise ValueError(
                "Data should be a Dataset or IterableDatset, but received {}.".
                format(type(data).__name__))
        inputs = to_list(inputs)
        labels = to_list(labels)

        num_shards = self._strategy.dataset.num_shards
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                _adjust_item_spec(num_shards, spec)
                spec = InputSpec.from_tensor(item, name)
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            else:
                specs.append(InputSpec([batch_size], type(item), name))

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

    def _prepare_data_tensor(self,
                             inputs_spec,
                             labels_spec,
                             inputs=None,
                             labels=None):
        if _non_static_mode() or self._dygraph_mode:
            return None, None
        inputs_spec = inputs_spec if inputs_spec else []
        labels_spec = labels_spec if labels_spec else []
        if inputs_spec:
            assert isinstance(inputs_spec, list), \
                "inputs should be list, but received {}".format(type(inputs_spec))
            if inputs is None:
                inputs = [s._create_feed_layer() for s in inputs_spec]
            else:
                assert isinstance(inputs, list), \
                    "inputs should be list, but received {}".format(type(inputs))
                for input_spec, input in zip(inputs_spec, inputs):
                    if input_spec.shape != input.shape:
                        input.desc.set_shape(input_spec.shape)
        if labels_spec:
            assert isinstance(labels_spec, list), \
                "labels should be list, but received {}".format(type(labels_spec))
            if labels is None:
                labels = [s._create_feed_layer() for s in labels_spec]
            else:
                assert isinstance(labels, list), \
                    "labels should be list, but received {}".format(type(labels))
                for label_spec, label in zip(labels_spec, labels):
                    if label_spec.shape != label.shape:
                        label.desc.set_shape(label_spec.shape)
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
            "create_py_reader", "create_double_buffer_reader", "read"
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
360 361 362
        if user_feeds is not None:
            assert isinstance(user_feeds, dict), \
                "user_feeds must be a dict, but receive {}".format(type(user_feeds).__name__)
363 364
            for name, data in user_feeds.items():
                feeds[name] = data
365 366
        return feeds

367
    def _prepare_fetch(self, user_fetches, mode):
368 369 370 371
        if user_fetches is not None:
            assert isinstance(user_fetches, list), \
                "user_fetches must be a list, but receive {}".format(type(user_fetches).__name__)
        fetch_names = []
372
        fetch_indices = []
373

374 375
        def _process_fetch_group(group_name, var_list):
            group_indices = []
376
            for var in var_list:
377 378 379 380 381 382
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
383 384
            if not group_indices:
                fetch_names.append([])
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

    def _prepare_logger(self,
                        outs,
                        epoch=None,
                        step=None,
                        lr=None,
                        fetch_names=None,
                        fetch_indices=None,
409
                        mode=None):
Z
zhaoyingli 已提交
410
        logs = {}
411
        if epoch is not None:
Z
zhaoyingli 已提交
412
            logs["epoch"] = epoch
413
        if step is not None:
Z
zhaoyingli 已提交
414
            logs["step"] = step + 1
415
        if lr is not None:
Z
zhaoyingli 已提交
416
            logs["lr"] = lr
417 418
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
419
            # logging loss
420
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
421
            assert len(loss_indices) <= 1
422
            for idx in loss_indices:
Z
zhaoyingli 已提交
423
                logs["loss"] = outs[idx][0]
424
            group_idx += 1
Z
zhaoyingli 已提交
425
            # logging metrics
426 427 428 429 430 431 432 433 434 435 436
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
                        for i, res in enumerate(to_list(results)):
Z
zhaoyingli 已提交
437
                            logs[metric.name()[i]] = res
438
                    group_idx += 1
Z
zhaoyingli 已提交
439 440 441 442 443 444 445
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
446 447
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
448 449 450
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
        for name, var in collect_fetches:
451 452
            if var.name in fetch_names:
                idx = fetch_names.index(var.name)
Z
zhaoyingli 已提交
453 454 455
                logs_fetch[name or var.name] = outs[idx]
        logs["fetches"] = logs_fetch
        return logs
456

457 458 459 460 461 462 463 464 465 466 467
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

468
    def _build(self, mode):
469
        if _non_static_mode() or self._dygraph_mode:
470
            paddle.disable_static()
471 472 473
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

474 475
            inputs_spec = self._inputs_spec
            labels_spec = self._labels_spec if self._labels_spec else []
476
            self.program_helper = ProgramHelper(self._model, self._loss,
477 478
                                                self._metrics, inputs_spec,
                                                labels_spec)
479
            # build forward main program
480
            self.program_helper.build_program(mode)
481

482 483 484
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
485

486 487 488 489 490
            inputs = self.program_helper.input_vars
            outputs = self.program_helper.output_vars
            labels = self.program_helper.label_vars
            losses = self.program_helper.loss_vars
            metrics = self.program_helper.metric_vars
491

492 493 494
            self._inputs = inputs
            self._labels = labels

495
            paddle.enable_static()
496 497 498 499 500 501
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

502
            outputs = []
503 504
            losses = []
            metrics = []
505 506
            inputs = self._inputs if self._inputs else []
            labels = self._labels if self._labels else []
507 508
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
509 510 511 512 513 514 515 516 517 518 519 520 521
            if not self._skip_build:
                with static.program_guard(serial_main_prog, serial_startup_prog), \
                    utils.unique_name.guard():
                    outputs = to_list(self._model(*inputs))
                    if mode != "predict" and self._loss:
                        losses = to_list(self._loss(*(outputs + labels)))

                    if mode != "predict" and (outputs or labels):
                        for metric in self._metrics:
                            metrics.append(
                                to_list(metric.compute(*(outputs + labels))))
            else:
                losses = to_list(self._loss)
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

538 539 540
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

541
        self._set_recompute_ckpts()
542 543
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
544 545
            feed_vars, fetch_vars, self._cluster, self._strategy)
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
546

547 548 549
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
550

551 552 553 554 555 556 557 558
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
559 560

        from .tuner.optimization_tuner import OptimizationTuner
561
        self._optimization_tuner = OptimizationTuner(self._tuning.to_dict(),
562 563
                                                     self._dist_contexts[mode],
                                                     dataset,
564 565
                                                     self._inputs_spec,
                                                     self._labels_spec,
566 567 568 569 570
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

571
        if self._tuning.run_after_tuning:
572 573 574 575
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()

576 577 578 579 580 581
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

582 583
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
584

585 586 587 588
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
589
        # TODO: check this feed_list
590 591 592 593 594
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

595 596
        self._dp_world_sizes = []
        self._dp_ranks = []
597 598 599
        for feed_var in feed_list:
            dp_world_size, dp_rank = self._get_input_split_info(
                feed_var, self._dist_contexts[mode])
600 601
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
602

603
    def _parallel(self, mode, all_ranks=False):
604 605 606
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
607
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
608 609 610 611 612
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
613 614

    def _init_dist_context(self, mode):
615
        # Init dist_context['mode'] with the first planned dist_context
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
633
        # Get the current content from the distributed context
634 635 636 637
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
638 639 640 641
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
642 643
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
644
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
645

646 647 648 649
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
650

651
            # NOTE: add the comm init control in the future for auto search
652 653 654 655
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
656

657 658 659
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
660

661 662 663 664 665
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

666
        if self._dygraph_mode:
667 668 669
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
670

671
        if self._executor is None:
672
            self._executor = paddle.static.Executor(place)
673 674 675 676 677 678 679 680 681 682
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
683

684 685 686 687 688
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
                self._set_state_dict(mode, self._strict, self._state_dict,
                                     self._dist_attr)

        if self._strategy.reinit:
Z
zhaoyingli 已提交
689
            self._logger.info("NOTE: parameters will be re-initialized.")
690 691 692
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

693 694
    def fit(self,
            train_data,
695
            train_sample_split=None,
696 697 698
            batch_size=1,
            epochs=1,
            steps_per_epoch=None,
Z
zhaoyingli 已提交
699 700 701
            log_freq=10,
            save_dir=None,
            save_freq=1,
702 703 704 705
            valid_data=None,
            valid_sample_split=None,
            valid_freq=1,
            valid_steps=None,
706
            collate_fn=None,
Z
zhaoyingli 已提交
707 708
            callbacks=None,
            verbose=2):
709 710 711 712 713 714 715 716
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
717
                more than two items, train_sample_split specifies how to split these items into
718
                input and label. The items before it are input and the left are label. Default: None.
719
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
720 721 722
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
723
                is executed in one epoch before stating the next one. If None, it is equal to
724 725
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
726
                evaluation at the end of epoch. No evaluation will be done if set to None.
727
                Default: None. (Unsupported for now)
728
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
729 730
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
731 732
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
733 734 735
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
736 737
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
738 739 740 741
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
742
                0. Default None.
743 744 745 746 747 748 749 750 751 752 753 754
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
755
                from paddle.distributed.fleet import auto
756 757 758 759 760 761 762 763 764
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
765
                loss = paddle.nn.CrossEntropyLoss()
766 767 768 769
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

770
                engine = auto.Engine(model, loss, optimizer, metrics)
771 772 773 774
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
775 776 777 778 779 780 781
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
            train_data, train_sample_split, batch_size)
        self._inputs, self._labels = self._prepare_data_tensor(
            self._inputs_spec, self._labels_spec)
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
782
        else:
783
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
784 785 786 787

        assert self._mode in self._dist_main_progs, \
            "train model is not ready, please call `engine._prepare_program('train')` first."

788 789 790 791 792 793 794 795
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
            collate_fn=collate_fn)
Z
zhaoyingli 已提交
796

797
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
                        return_numpy=self._strategy.return_numpy)
                except core.EOFException:
                    break
                lr = get_lr(self._optimizer)
                logs = self._prepare_logger(outs, epoch, step, lr, fetch_names,
                                            fetch_indices, self._mode)
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
                val_logs = self.evaluate(valid_data, valid_sample_split,
                                         batch_size, valid_steps, log_freq,
                                         collate_fn, callbacks, verbose)
                val_logs = {
                    "val_" + name: val
                    for name, val in val_logs.items()
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
849

850
    def evaluate(self,
851 852
                 valid_data,
                 valid_sample_split=None,
853
                 batch_size=1,
854
                 steps=None,
Z
zhaoyingli 已提交
855
                 log_freq=10,
856
                 collate_fn=None,
Z
zhaoyingli 已提交
857 858
                 callbacks=None,
                 verbose=2):
859 860 861 862
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
863 864
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
865
                to be a (input, label) pair by default and has two items. If each sample has
866
                more than two items, valid_sample_split specifies how to split these items into
867
                input and label. The items before it are input and the left are label. Default: None.
868
            batch_size (int, optional): The batch size of valid_data. The user's data will
869
                be used directly without batching if set to None. Default: 1.
870 871
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
872 873 874 875 876
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
877
                during evaluating. Default: None. (Unused for now)
878 879 880 881 882 883 884 885 886 887

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
888
                from paddle.distributed.fleet import auto
889 890 891 892 893 894 895 896 897
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
898
                loss = paddle.nn.CrossEntropyLoss()
899 900
                metrics = paddle.metric.Accuracy(topk=(1, 2))

901
                engine = auto.Engine(model, loss, metrics=metrics)
902 903 904
                engine.evaluate(valid_dataset, batch_size=64)

        """
905 906 907 908 909 910 911
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
            valid_data, valid_sample_split, batch_size)
        self._inputs, self._labels = self._prepare_data_tensor(
            self._inputs_spec, self._labels_spec)
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
912
        else:
913
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
914

915
        assert self._mode in self._dist_main_progs, \
916
            "eval model is not ready, please call `engine._prepare_program('eval')` first."
917 918 919 920 921 922 923
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
            collate_fn=collate_fn)
Z
zhaoyingli 已提交
924

925
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
926

Z
zhaoyingli 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
        cbks.on_begin('eval', {
            'steps': eval_steps,
            'metrics': self._metrics_name()
        })
        logs = {}
942
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
943
            cbks.on_batch_begin('eval', step, logs)
944
            try:
945 946
                outs = self._executor.run(
                    self.main_program,
947
                    fetch_list=fetch_names,
948 949 950
                    use_program_cache=self._strategy.use_cache,
                    return_numpy=self._strategy.return_numpy)
            except core.EOFException:
951
                break
Z
zhaoyingli 已提交
952 953 954 955
            logs = self._prepare_logger(outs, None, step, None, fetch_names,
                                        fetch_indices, self._mode)
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
956
        self._reset_metrics()
Z
zhaoyingli 已提交
957
        return logs
958

959 960
    def predict(self,
                test_data,
961
                test_sample_split=None,
962
                batch_size=1,
963
                steps=None,
964
                collate_fn=None,
Z
zhaoyingli 已提交
965 966
                callbacks=None,
                verbose=2):
967 968 969 970 971 972 973
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
974
                more than two items, test_sample_split specifies how to split these items into
975 976 977
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
978 979
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
996
                from paddle.distributed.fleet import auto
997 998 999 1000 1001 1002 1003 1004 1005 1006
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1007
                engine = auto.Engine(model)
1008 1009
                engine.predict(valid_dataset, batch_size=64)
        """
1010 1011 1012 1013 1014 1015 1016
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
            test_data, test_sample_split, batch_size)
        self._inputs, self._labels = self._prepare_data_tensor(
            self._inputs_spec, self._labels_spec)
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1017
        else:
1018
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1019

1020
        assert self._mode in self._dist_main_progs, \
1021
            "predict model is not ready, please call `engine._prepare_program('predict')` first."
Z
zhaoyingli 已提交
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            # feed_list=feed_list,
            capacity=70,
            # use_double_buffer=use_double_buffer,
            iterable=False,
            # return_list=return_list,
            # use_multiprocess=use_multiprocess,
            # drop_last=drop_last,
            # places=places,
            batch_size=batch_size,
            # epochs=epochs,
            steps_per_epoch=steps,
            collate_fn=collate_fn)
Z
zhaoyingli 已提交
1037

1038
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1039

Z
zhaoyingli 已提交
1040 1041 1042 1043 1044
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1045
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1046
            cbks.on_batch_begin('predict', step, logs)
1047
            try:
1048 1049
                outs = self._executor.run(
                    self.main_program,
1050
                    fetch_list=fetch_names,
1051 1052 1053
                    use_program_cache=self._strategy.use_cache,
                    return_numpy=self._strategy.return_numpy)
            except core.EOFException:
1054
                break
Z
zhaoyingli 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            logs = self._prepare_logger(outs, None, step, None, fetch_names,
                                        fetch_indices, self._mode)
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

    def dataloader(self,
                   dataset,
                   batch_size=1,
                   shuffle=False,
                   drop_last=False,
                   collate_fn=None,
                   num_workers=0,
                   use_buffer_reader=True,
                   use_shared_memory=True,
                   timeout=0,
                   worker_init_fn=None,
                   epochs=1,
                   steps_per_epoch=None,
                   sample_split=1,
                   mode=None):
1077 1078 1079 1080 1081 1082 1083 1084
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
            dataset, sample_split, batch_size)
        self._inputs, self._labels = self._prepare_data_tensor(
            self._inputs_spec, self._labels_spec)
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1085
        else:
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            self._switch_mode(self._mode)
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch)
1101 1102
        return dataloader

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    def dataloader_from_generator(
            self,
            dataset,
            capacity=70,
            use_double_buffer=True,
            iterable=True,
            # return_list=False,
            use_multiprocess=False,
            drop_last=True,
            batch_size=1,
            epochs=1,
            steps_per_epoch=None,
            collate_fn=None,
            sample_split=1,
            mode=None):
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
            dataset, sample_split, batch_size)
        self._inputs, self._labels = self._prepare_data_tensor(
            self._inputs_spec, self._labels_spec)
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            # feed_list=feed_list,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            # places=places,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
            collate_fn=collate_fn)
        return dataloader

    def prepare(self,
                inputs_spec=None,
                labels_spec=None,
                inputs=None,
                labels=None,
                main_program=None,
                startup_program=None,
                mode=None):
        if mode is not None:
            self.to_mode(mode)
        if inputs or labels:
            self._skip_build = True
1156 1157
            self._inputs_spec = inputs_spec
            self._labels_spec = labels_spec
1158
            self._inputs, self._labels = self._prepare_data_tensor(
1159
                self._inputs_spec, self._labels_spec, inputs, labels)
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            self._orig_main_prog = main_program
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            self._orig_startup_prog = startup_program
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
            if not self._has_prepared[self._mode]:
                self._prepare_program(self._mode)
            else:
                self._switch_mode(self._mode)
        elif inputs_spec or labels_spec:
1171 1172
            self._inputs_spec = inputs_spec
            self._labels_spec = labels_spec
1173 1174
            self._outside_dataloader = True
            self._inputs, self._labels = self._prepare_data_tensor(
1175
                self._inputs_spec, self._labels_spec)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            self._orig_main_prog = main_program
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            self._orig_startup_prog = startup_program
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
            if not self._has_prepared[self._mode]:
                self._prepare_program(self._mode)
            else:
                self._switch_mode(self._mode)
        else:
            assert self._inputs_spec and self._labels_spec, \
                "Please call the dataloader(...) before calling prepare(...)"

    def run(
        self,
        data=None,
        # program=None,
        feed=None,
        fetch_list=None,
        # feed_var_name='feed',
        # fetch_var_name='fetch',
        # scope=None,
        # return_numpy=True,
        # use_program_cache=False,
        # return_merged=True,
        # use_prune=False,
        mode=None):
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
        if self._outside_dataloader and not self._has_prepared_reader[
                self._mode]:
            self._prepare_reader()
        outs = self._executor.run(self.main_program,
                                  feed=feed_dict,
                                  fetch_list=fetch_names,
                                  use_program_cache=self._strategy.use_cache,
                                  return_numpy=self._strategy.return_numpy)
Z
zhaoyingli 已提交
1216 1217 1218
        logs = self._prepare_logger(outs, None, None, None, fetch_names,
                                    fetch_indices, self._mode)
        return logs
1219

1220 1221
    def _prepare_dataloader(self,
                            dataset,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
                            return_list=True,
                            batch_size=1,
                            shuffle=False,
                            drop_last=False,
                            collate_fn=None,
                            num_workers=0,
                            use_buffer_reader=True,
                            use_shared_memory=True,
                            timeout=0,
                            worker_init_fn=None,
1232
                            epochs=1,
1233
                            steps_per_epoch=None):
1234

1235 1236 1237 1238
        if self._strategy.gradient_merge and batch_size is not None:
            assert batch_size % self._k_steps == 0, \
                "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(batch_size, self._k_steps)
            batch_size //= self._k_steps
1239

1240 1241 1242
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
1243
        dist_main_block = dist_main_prog.global_block()
1244

1245 1246 1247 1248
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1249 1250
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1251 1252 1253 1254
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1255 1256 1257 1258
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1259 1260

        # insert read op at the end of program
1261
        places = paddle.static.cuda_places()
1262
        with static.program_guard(dist_main_prog, dist_startup_prog):
1263
            dataloader = DistributedDataLoader(
1264
                dataset,
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1280
                data_parallel_world_size=self._dp_world_sizes,
1281
                data_parallel_rank=self._dp_ranks)
1282

1283 1284
        return dataloader

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    def _prepare_dataloader_from_generator(self,
                                           dataset,
                                           capacity=None,
                                           use_double_buffer=True,
                                           iterable=True,
                                           return_list=False,
                                           use_multiprocess=False,
                                           drop_last=True,
                                           batch_size=1,
                                           epochs=1,
                                           steps_per_epoch=None,
                                           collate_fn=None):

        if self._strategy.gradient_merge and batch_size is not None:
            assert batch_size % self._k_steps == 0, \
                "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(batch_size, self._k_steps)
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
                data_parallel_rank=self._dp_ranks)
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
            tune_data, tune_sample_split, batch_size)
        self._inputs, self._labels = self._prepare_data_tensor(
            self._inputs_spec, self._labels_spec)
        self._optimization_tuning(self._mode, tune_data, batch_size)

1353 1354
    def _validate_spec(self, specs):
        specs = to_list(specs)
1355
        self._k_steps = self._strategy.gradient_merge.k_steps
1356 1357 1358 1359 1360 1361 1362
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
1363
                if self._k_steps > 1:
1364
                    shape = list(spec.shape)
1365 1366 1367
                    assert shape[0] % self._k_steps == 0, \
                        "Requires batch_size[{}] to be divisible by k_steps[{}].".format(spec.shape[0], self._k_steps)
                    shape[0] //= self._k_steps
1368
                    spec.shape = shape
1369 1370
        return specs

1371 1372 1373 1374
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1375 1376
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

1396
        return 1, 0
1397

1398 1399 1400 1401
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

1402
        recompute = self._strategy.recompute
1403 1404

        # extract ckpts by specific model
1405
        if isinstance(self._model, paddle.nn.Layer):
Z
zhaoyingli 已提交
1406 1407 1408 1409
            if hasattr(self._model,
                       "gpt") and self._model.__class__.__name__ in [
                           'GPTForPretraining', 'GPTForPretrainingAuto'
                       ]:
1410
                exact_ckpts = self._model.gpt.checkpoints
1411
            else:
1412
                exact_ckpts = recompute.checkpoints
1413
        else:
1414
            exact_ckpts = recompute.checkpoints
1415 1416

        # modify strategy
1417 1418
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
1419
            logs = {
1420
                'Model Class': self._model.__class__.__name__,
1421 1422 1423 1424
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

1425
    def _validate_opt(self, optimizer):
1426 1427 1428
        if optimizer is not None:
            optimizer._parameter_list = None
            optimizer._param_groups = None
1429 1430
        return optimizer

1431 1432 1433 1434
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1435 1436 1437 1438 1439 1440
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

1441
    def _switch_mode(self, mode):
1442
        self.to_mode(mode)
Z
zhaoyingli 已提交
1443
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1444

1445 1446 1447 1448 1449
    def to_mode(self, mode):
        assert mode in ["train", "eval", "predict"], \
            "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
        self._mode = mode

1450 1451 1452 1453 1454 1455 1456 1457 1458
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        cur_dist_attr = get_dist_attr(program, dist_context)
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1459 1460
        """
        Saves the model, parameters, optimizer state to path.
1461 1462 1463 1464 1465 1466 1467
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1468
                for inference only. If `training` is set to True, the optimizer state
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1481
                from paddle.distributed.fleet import auto
1482 1483 1484 1485 1486 1487 1488 1489 1490
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1491
                loss = paddle.nn.CrossEntropyLoss()
1492 1493 1494 1495
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1496
                engine = auto.Engine(model, loss, optimizer, metrics)
1497 1498 1499 1500
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1501

1502
        """
1503
        if training:
Z
zhaoyingli 已提交
1504 1505 1506 1507
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1508 1509 1510 1511
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
1512
        else:
Z
zhaoyingli 已提交
1513 1514 1515 1516
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1517 1518 1519 1520 1521
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
1522

1523 1524 1525 1526 1527 1528
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1529
                optimizer states.
1530 1531 1532 1533 1534
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape). Default: False.
            load_optimizer (bool, optional): If True, the stored optimizer
1535
                states is restored. Otherwise, the optimizer states is initialized
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                from scratch. Default: False.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1546
                from paddle.distributed.fleet import auto
1547 1548 1549 1550 1551 1552 1553 1554 1555
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1556
                loss = paddle.nn.CrossEntropyLoss()
1557 1558 1559 1560
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1561
                engine = auto.Engine(model, loss, optimizer, metrics)
1562 1563 1564 1565 1566
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1567

1568 1569 1570 1571 1572
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
            path, load_optimizer)
        return self._state_dict, self._dist_attr
1573 1574 1575

    @property
    def main_program(self):
1576
        return self._dist_main_progs[self._mode][self._cur_rank]
1577 1578 1579

    @property
    def startup_program(self):
1580
        return self._dist_startup_progs[self._mode][self._cur_rank]
1581 1582 1583

    @property
    def dist_context(self):
1584
        return self._dist_contexts[self._mode]
1585 1586 1587

    @property
    def serial_main_program(self):
1588
        return self._serial_main_progs[self._mode]
1589 1590 1591

    @property
    def serial_startup_program(self):
1592
        return self._serial_startup_progs[self._mode]
1593 1594 1595

    @property
    def fetch_vars(self):
1596
        return self._fetch_vars[self._mode]
1597 1598 1599

    @property
    def inputs(self):
1600
        return self._inputs
1601 1602 1603

    @property
    def labels(self):
1604
        return self._labels