legacy_backward.yaml 96.7 KB
Newer Older
1
- backward_op : abs_double_grad
Z
zyfncg 已提交
2 3 4 5 6 7 8 9 10 11 12
  forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_double_grad
  data_transform:
    skip_transform : grad_x_grad

13
- backward_op : abs_grad
Z
zyfncg 已提交
14 15 16 17 18 19 20 21 22 23
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_grad
  backward : abs_double_grad

24
- backward_op : acos_grad
Z
zyfncg 已提交
25 26 27 28 29 30 31 32 33 34
  forward : acos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : acos_grad
  inplace : (out_grad -> x_grad)

35
- backward_op : acosh_grad
Z
zyfncg 已提交
36 37 38 39 40 41 42 43 44 45
  forward : acosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : acosh_grad
  inplace : (out_grad -> x_grad)

46
- backward_op : add_double_grad
Z
zyfncg 已提交
47 48 49 50 51 52 53 54 55 56 57 58
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

59
- backward_op : add_grad
Z
zyfncg 已提交
60 61 62 63 64 65 66 67 68 69 70 71
  forward : add (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
  no_need_buffer : x, y
  backward : add_double_grad
  inplace : (out_grad -> x_grad)

72
- backward_op : add_triple_grad
Z
zyfncg 已提交
73 74 75 76 77 78 79 80 81 82
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad
  inplace : (grad_grad_out_grad -> grad_grad_x_grad)

83
- backward_op : addmm_grad
Z
zyfncg 已提交
84 85 86 87 88 89 90 91 92
  forward : addmm (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out)
  args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta)
  output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [input, x, y]
  kernel :
    func : addmm_grad

93
- backward_op : affine_grid_grad
94 95 96 97 98 99 100 101 102 103 104
  forward : affine_grid (Tensor input, IntArray outputShape, bool use_cudnn=true, bool align_corners=true) -> Tensor(output)
  args : (Tensor output_grad, IntArray outputShape, bool use_cudnn=true, bool align_corners=true)
  output : Tensor(input_grad)
  infer_meta :
    func : AffineGridGradInferMeta
    param : [output_grad, outputShape, align_corners]
  kernel :
    func : affine_grid_grad
    param : [output_grad, outputShape, align_corners]
    use_gpudnn: use_cudnn

105
- backward_op : amax_grad
106 107
  forward: amax (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
108 109 110 111 112 113 114
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amax_grad

115
- backward_op : amin_grad
116 117
  forward: amin (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
118 119 120 121 122 123 124
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amin_grad

125
- backward_op : angle_grad
W
WangZhen 已提交
126 127 128 129 130 131 132 133 134 135 136
  forward : angle (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : angle_grad
  data_transform:
    skip_transform : out_grad

137
- backward_op : argsort_grad
Z
zyfncg 已提交
138 139 140 141 142 143 144 145
  forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices)
  args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : argsort_grad
146
    data_type : out_grad
Z
zyfncg 已提交
147 148
  no_need_buffer : x

149
- backward_op : as_complex_grad
150 151 152 153 154
  forward : as_complex (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : as_real(out_grad)

155
- backward_op : as_real_grad
156 157 158 159 160
  forward : as_real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : as_complex(out_grad)

161
- backward_op : asin_grad
Z
zyfncg 已提交
162 163 164 165 166 167 168 169 170 171
  forward : asin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asin_grad
  inplace : (out_grad -> x_grad)

172
- backward_op : asinh_grad
Z
zyfncg 已提交
173 174 175 176 177 178 179 180 181 182
  forward : asinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asinh_grad
  inplace : (out_grad -> x_grad)

183
- backward_op : assign_grad
Z
zyfncg 已提交
184 185 186
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
187
  invoke : assign(out_grad)
Z
zyfncg 已提交
188

189
- backward_op : assign_out__grad
Z
zyfncg 已提交
190 191 192 193 194 195 196 197 198
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : assign
  inplace : (out_grad -> x_grad)

199
- backward_op : atan_grad
Z
zyfncg 已提交
200 201 202 203 204 205 206 207 208 209
  forward : atan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atan_grad
  inplace : (out_grad -> x_grad)

210
- backward_op : atanh_grad
Z
zyfncg 已提交
211 212 213 214 215 216 217 218 219 220
  forward : atanh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atanh_grad
  inplace : (out_grad -> x_grad)

221
- backward_op : batch_norm_double_grad
Z
zyfncg 已提交
222 223 224 225 226 227 228 229 230 231 232 233
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
    func : batch_norm_grad_grad
    data_type : x
  optional : out_mean, out_variance
  inplace : (grad_out -> grad_out_grad)

234
- backward_op : batch_norm_grad
Z
zyfncg 已提交
235 236 237 238 239 240 241 242 243 244 245 246
  forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
  backward : batch_norm_double_grad

247
- backward_op : bce_loss_grad
Z
zyfncg 已提交
248 249 250 251 252 253 254 255 256 257
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad
  inplace : (out_grad -> input_grad)

258
- backward_op : bicubic_interp_grad
259 260 261 262 263 264 265 266 267 268 269
  forward : bicubic_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : bicubic_interp_grad
    data_type : output_grad

270
- backward_op : bilinear_interp_grad
271 272 273 274 275 276 277 278 279 280 281
  forward : bilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : bilinear_interp_grad
    data_type : output_grad

282
- backward_op : bilinear_tensor_product_grad
283 284 285 286 287 288 289 290
  forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(weight_grad), Tensor(bias_grad)
  infer_meta :
    func : BilinearTensorProductGradInferMeta
  kernel :
    func : bilinear_tensor_product_grad

291
- backward_op : bmm_grad
292 293 294 295 296 297 298 299
  forward : bmm (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : BmmGradInferMeta
  kernel :
    func : bmm_grad

300
- backward_op : brelu_grad
Z
zyfncg 已提交
301 302 303 304 305 306 307 308 309 310
  forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float t_min, float t_max)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : brelu_grad
  inplace : (out_grad -> x_grad)

311
- backward_op : broadcast_tensors_grad
312 313 314
  forward : broadcast_tensors (Tensor[] input) -> Tensor[](out)
  args : (Tensor[] input, Tensor[] out_grad)
  output : Tensor[](input_grad)
315 316
  infer_meta :
    func : UnchangedMultiInferMeta
317
    param : [input]
318 319 320
  kernel :
    func : broadcast_tensors_grad
    param : [out_grad]
321
  no_need_buffer : input
322

323
- backward_op : cast_grad
324
  forward : cast (Tensor x, DataType dtype) -> Tensor(out)
Z
zyfncg 已提交
325 326
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
327
  invoke : cast (out_grad, x.dtype())
Z
zyfncg 已提交
328 329
  no_need_buffer : x

330
- backward_op : ceil_grad
Z
zyfncg 已提交
331 332 333 334 335 336 337 338 339 340
  forward : ceil(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : ceil_grad
  inplace : (out_grad -> x_grad)

341
- backward_op : celu_double_grad
Z
zyfncg 已提交
342 343 344 345 346 347 348 349 350 351
  forward : celu_grad(Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : celu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

352
- backward_op : celu_grad
Z
zyfncg 已提交
353 354 355 356 357 358 359 360 361 362 363
  forward : celu(Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : celu_grad
  backward : celu_double_grad
  inplace : (out_grad -> x_grad)

364
- backward_op : clip_double_grad
Z
zyfncg 已提交
365 366 367 368 369 370 371 372 373
  forward : clip_grad (Tensor x, Tensor grad_out, Scalar min = 0., Scalar max = 0.) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad

374
- backward_op : clip_grad
Z
zyfncg 已提交
375 376 377 378 379 380 381 382 383 384 385
  forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad
  backward : clip_double_grad
  inplace : (out_grad -> x_grad)

386
- backward_op : complex_grad
387 388 389
  forward : complex (Tensor real, Tensor imag) -> Tensor(out)
  args : (Tensor real, Tensor imag, Tensor out_grad)
  output : Tensor(real_grad), Tensor(imag_grad)
390 391 392 393
  infer_meta :
    func : ComplexGradInferMeta
  kernel :
    func : complex_grad
394
    data_type : real
395

396
- backward_op : concat_double_grad
Z
zyfncg 已提交
397 398 399
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
400
  invoke : concat(grad_x_grad, axis)
Z
zyfncg 已提交
401

402
- backward_op : concat_grad
Z
zyfncg 已提交
403 404 405 406 407 408 409 410 411 412 413
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
  no_need_buffer : x
  backward : concat_double_grad

414
- backward_op : conj_grad
Z
zyfncg 已提交
415 416 417 418 419 420 421 422 423
  forward : conj (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : conj

424
- backward_op : conv2d_grad
Z
zyfncg 已提交
425 426 427
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
428 429 430 431 432 433
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv2d_grad
    use_gpudnn : true
Z
zyfncg 已提交
434 435
  backward : conv2d_grad_grad

436
- backward_op : conv2d_grad_grad
Z
zyfncg 已提交
437 438 439 440 441 442 443 444 445 446 447
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv2d_grad_grad
    use_gpudnn : true
  optional : grad_input_grad, grad_filter_grad

448
- backward_op : conv2d_transpose_double_grad
449 450
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
451 452 453 454 455 456 457
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
    func : conv2d_transpose_grad_grad
    use_gpudnn : true

458
- backward_op : conv2d_transpose_grad
459 460
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
461 462
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
463
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
464 465 466 467 468
  kernel :
    func : conv2d_transpose_grad
    use_gpudnn : true
  backward : conv2d_transpose_double_grad

469
- backward_op : conv3d_grad
Z
zyfncg 已提交
470 471 472
  forward : conv3d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad)
Z
zyfncg 已提交
473 474 475 476 477 478
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : conv3d_grad
    use_gpudnn : true
Z
zyfncg 已提交
479 480
  backward : conv3d_grad_grad

481
- backward_op : conv3d_grad_grad
Z
zyfncg 已提交
482 483 484 485 486 487 488 489 490 491 492
  forward : conv3d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv3d_grad_grad
    use_gpudnn : true
  optional : grad_input_grad, grad_filter_grad

493
- backward_op : conv3d_transpose_grad
Z
zyfncg 已提交
494 495 496 497 498 499 500 501 502
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad
    use_gpudnn : true

503
- backward_op : cos_grad
Z
zyfncg 已提交
504 505 506 507 508 509 510 511 512 513
  forward : cos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cos_grad
  inplace : (out_grad -> x_grad)

514
- backward_op : cosh_grad
Z
zyfncg 已提交
515 516 517 518 519 520 521 522 523 524
  forward : cosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cosh_grad
  inplace : (out_grad -> x_grad)

525
- backward_op : crop_tensor_grad
526 527 528 529 530 531 532 533 534
  forward : crop_tensor (Tensor x, IntArray shape, IntArray offsets) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray offsets)
  output : Tensor(x_grad)
  infer_meta :
    func : CropTensorGradInferMeta
  kernel :
    func : crop_tensor_grad
    data_type : x

535
- backward_op : cross_entropy_with_softmax_grad
Z
zyfncg 已提交
536 537 538 539 540 541 542 543 544 545
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax
  inplace : (softmax -> input_grad)

546
- backward_op : cumprod_grad
Z
zyfncg 已提交
547 548 549 550 551 552 553 554 555
  forward : cumprod (Tensor x, int dim) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumprod_grad

556
- backward_op : cumsum_grad
W
WangZhen 已提交
557 558
  forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  args : (Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
Z
zyfncg 已提交
559 560 561
  output : Tensor(x_grad)
  invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse)

562
- backward_op : deformable_conv_grad
Z
zyfncg 已提交
563 564 565 566 567 568 569 570 571 572
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
    data_type : x
  optional : mask

573
- backward_op : depthwise_conv2d_grad
Z
zyfncg 已提交
574 575 576 577 578 579 580 581 582 583 584 585
  forward : depthwise_conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn)
  output : Tensor(input_grad), Tensor(filter_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [input, filter]
  kernel :
    func : depthwise_conv2d_grad
    param : [input, filter, out_grad, strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search, fuse_relu]
    use_gpudnn : use_gpudnn
  backward : depthwise_conv2d_grad_grad

586
- backward_op : depthwise_conv2d_grad_grad
Z
zyfncg 已提交
587 588 589 590 591 592 593 594 595 596
  forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : depthwise_conv2d_grad_grad
  optional : grad_input_grad, grad_filter_grad

597
- backward_op : depthwise_conv2d_transpose_grad
598 599
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
600 601
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
602
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
603 604 605
  kernel :
    func : depthwise_conv2d_transpose_grad

606
- backward_op : det_grad
Z
zyfncg 已提交
607 608 609 610 611 612 613 614 615
  forward : det (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : determinant_grad

616
- backward_op : divide_double_grad
Z
zyfncg 已提交
617 618 619 620 621 622 623 624 625 626 627 628
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)

629
- backward_op : divide_grad
Z
zyfncg 已提交
630 631 632 633 634 635 636 637 638 639
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
  backward : divide_double_grad

640
- backward_op : dropout_grad
641 642
  forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode)
Z
zyfncg 已提交
643 644 645 646 647 648 649
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

650
- backward_op : eig_grad
651 652 653 654 655 656 657 658 659 660 661 662
  forward : eig (Tensor x) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eig_grad
    data_type : out_v
  data_transform:
    skip_transform : out_w, out_w_grad

663
- backward_op : eigh_grad
664
  forward : eigh (Tensor x, str UPLO) -> Tensor(out_w), Tensor(out_v)
Z
zyfncg 已提交
665 666 667 668 669 670 671 672 673 674 675
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eigh_grad
    data_type : out_v
  data_transform:
    skip_transform : out_w, out_w_grad

676
- backward_op : eigvalsh_grad
677 678 679 680 681 682 683 684 685 686 687
  forward : eigvalsh (Tensor x, str uplo, bool is_test) -> Tensor(eigenvalues), Tensor(eigenvectors)
  args : (Tensor eigenvectors, Tensor eigenvalues_grad, str uplo, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : EigvalshGradInferMeta
  kernel :
    func : eigvalsh_grad
    data_type : eigenvectors
  data_transform :
    skip_transform : eigenvalues_grad

688
- backward_op : einsum_grad
Z
zyfncg 已提交
689 690 691 692 693 694 695 696 697
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
  args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x_shape]
  kernel :
    func : einsum_grad

698
- backward_op : elementwise_pow_grad
Z
zyfncg 已提交
699 700 701 702 703 704 705 706 707
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : elementwise_pow_grad

708
- backward_op : elu_double_grad
Z
zyfncg 已提交
709 710 711 712 713 714 715 716 717 718
  forward : elu_grad (Tensor x, Tensor out, Tensor grad_out, float alpha)-> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : elu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

719
- backward_op : elu_grad
Z
zyfncg 已提交
720 721 722 723 724 725 726 727 728 729 730
  forward : elu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : elu_grad
  backward : elu_double_grad
  inplace : (out_grad -> x_grad)

731
- backward_op : embedding_grad
Z
zyfncg 已提交
732 733 734 735 736
  forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out)
  args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false)
  output : Tensor(weight_grad)
  invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad)

737
- backward_op : exp_grad
Z
zyfncg 已提交
738 739 740 741 742 743 744 745 746 747
  forward : exp (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : exp_grad
  inplace : (out_grad -> x_grad)

748
- backward_op : expand_as_grad
Z
zyfncg 已提交
749 750 751 752 753 754 755 756 757 758
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
  no_need_buffer : x

759
- backward_op : expand_double_grad
Z
zyfncg 已提交
760 761 762
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
763
  invoke : expand(grad_x_grad, shape)
Z
zyfncg 已提交
764

765
- backward_op : expand_grad
Z
zyfncg 已提交
766 767 768 769 770 771 772 773 774 775 776
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
  no_need_buffer : x
  backward : expand_double_grad

777
- backward_op : expm1_grad
Z
zyfncg 已提交
778 779 780 781 782 783 784 785 786 787
  forward : expm1 (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : expm1_grad
  inplace : (out_grad -> x_grad)

788
- backward_op : exponential__grad
789
  forward : exponential_ (Tensor x, float lam) -> Tensor(out)
790 791 792 793
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
794
  invoke : zeros_like(out_grad)
795

796
- backward_op : fill_diagonal_grad
Z
zhiboniu 已提交
797 798 799 800 801 802 803
  forward : fill_diagonal (Tensor x, float value, int offset, bool wrap) -> Tensor(out)
  args : (Tensor out_grad, float value, int offset, bool wrap)
  output : Tensor(x_grad)
  infer_meta :
    func : FillDiagonalGradInferMeta
  kernel :
    func : fill_diagonal_grad
Z
zhiboniu 已提交
804

805
- backward_op : fill_diagonal_tensor_grad
Z
zhiboniu 已提交
806 807 808 809 810 811 812
  forward : fill_diagonal_tensor (Tensor x, Tensor y, int64_t offset, int dim1, int dim2) -> Tensor(out)
  args : (Tensor out_grad, int64_t offset, int dim1, int dim2)
  output : Tensor(x_grad)
  infer_meta :
    func : FillDiagonalTensorGradInferMeta
  kernel :
    func : fill_diagonal_tensor_grad
813 814
  inplace : (out_grad -> x_grad)

815
- backward_op : fill_grad
816 817 818 819 820 821 822 823 824 825
  forward : fill (Tensor x, Scalar value) -> Tensor(out)
  args : (Tensor out_grad, Scalar value)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : fill_grad
  inplace : (out_grad -> x_grad)

826
- backward_op : flatten_grad
Z
zyfncg 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  inplace : (out_grad -> x_grad)

840
- backward_op : floor_grad
Z
zyfncg 已提交
841 842 843 844 845 846 847 848 849 850
  forward : floor(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : floor_grad
  inplace : (out_grad -> x_grad)

851
- backward_op : fmax_grad
Z
zyfncg 已提交
852 853 854 855 856 857 858 859 860
  forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

861
- backward_op : fmin_grad
Z
zyfncg 已提交
862 863 864 865 866 867 868 869 870
  forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

871
- backward_op : frame_grad
C
Charles-hit 已提交
872 873 874 875 876 877 878 879 880
  forward : frame(Tensor x, int frame_length, int hop_length, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int frame_length, int hop_length, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frame_grad

881
- backward_op : frobenius_norm_grad
Z
zyfncg 已提交
882 883 884 885 886 887 888 889 890
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

891
- backward_op : gather_grad
Z
zyfncg 已提交
892 893 894 895 896 897 898 899 900 901 902
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
  no_need_buffer : x

903
- backward_op : gather_nd_grad
Z
zyfncg 已提交
904 905 906 907 908 909 910 911 912 913
  forward : gather_nd (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : gather_nd_grad
  no_need_buffer : x

914
- backward_op : gelu_grad
Z
zyfncg 已提交
915 916 917 918 919 920 921 922 923
  forward : gelu(Tensor x,  bool approximate) -> Tensor(out)
  args : (Tensor x, Tensor out_grad,  bool approximate)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : gelu_grad

924
- backward_op : graph_send_recv_grad
925 926
  forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str reduce_op = "SUM", IntArray out_size = {0}) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str reduce_op = "SUM")
Z
zyfncg 已提交
927 928 929 930 931 932
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : graph_send_recv_grad
933 934 935
    data_type : out_grad
  optional: out, dst_count

936
- backward_op : graph_send_ue_recv_grad
937 938 939 940 941 942 943 944
  forward : graph_send_ue_recv (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op, str reduce_op, IntArray out_size) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str message_op, str reduce_op)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : graph_send_ue_recv_grad
Z
zyfncg 已提交
945 946 947
    data_type : out_grad
  optional: out, dst_count

948
- backward_op : grid_sample_grad
W
Wang Bojun 已提交
949 950 951
  forward : grid_sample (Tensor x, Tensor grid, str mode, str padding_mode, bool align_corners) -> Tensor(out)
  args : (Tensor x, Tensor grid, Tensor out_grad, str mode, str padding_mode, bool align_corners)
  output : Tensor(x_grad), Tensor(grid_grad)
952
  infer_meta :
W
Wang Bojun 已提交
953 954
    func : GeneralBinaryGradInferMeta
    param : [x, grid]
955
  kernel :
W
Wang Bojun 已提交
956 957 958
    func : grid_sample_grad
    data_type : x

959
- backward_op : group_norm_grad
Z
zyfncg 已提交
960 961 962 963 964 965 966 967 968 969 970 971
  forward : group_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) -> Tensor(y), Tensor(mean), Tensor(variance)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor y, Tensor mean, Tensor variance, Tensor y_grad, float epsilon, int groups, str data_layout)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, scale, bias]
  kernel :
    func : group_norm_grad
    data_type : y_grad
  optional: scale, bias
  inplace : (y_grad -> x_grad)

972
- backward_op : gumbel_softmax_grad
Z
zyfncg 已提交
973 974 975 976 977 978 979 980 981
  forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GumbelSoftmaxGradInferMeta
    param : [out, out_grad, axis]
  kernel :
    func : gumbel_softmax_grad

982 983
- backward_op : hardshrink_grad
  forward : hardshrink (Tensor x, float threshold) -> Tensor(out)
Z
zyfncg 已提交
984 985 986 987 988 989 990 991 992
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_shrink_grad
  inplace : (out_grad -> x_grad)

993 994
- backward_op : hardsigmoid_grad
  forward : hardsigmoid (Tensor x, float slope, float offset) -> Tensor(out)
Z
zyfncg 已提交
995 996 997 998 999 1000 1001 1002 1003
  args : (Tensor out, Tensor out_grad, float slope, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : hard_sigmoid_grad
  inplace : (out_grad -> x_grad)

1004 1005
- backward_op : hardswish_grad
  forward : hardswish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out)
Z
zyfncg 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014
  args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_swish_grad
  inplace : (out_grad -> x_grad)

1015
- backward_op : hierarchical_sigmoid_grad
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  forward : hierarchical_sigmoid (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
  args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse)
  output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x ,w, bias]
  optional: path, code, bias
  kernel :
    func : hierarchical_sigmoid_grad

1026
- backward_op : huber_loss_grad
Z
zyfncg 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
  forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
  args : (Tensor residual, Tensor out_grad, float delta)
  output : Tensor(input_grad), Tensor(label_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [residual, residual]
  kernel :
    func : huber_loss_grad

1036
- backward_op : imag_grad
Z
zyfncg 已提交
1037 1038 1039 1040 1041
  forward : imag (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : imag_grad_impl(out_grad, x_grad)

1042
- backward_op : index_add_grad
L
Li Min 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
  forward : index_add(Tensor x, Tensor index,  Tensor add_value, int axis) -> Tensor(out)
  args : (Tensor index, Tensor add_value, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(add_value_grad)
  infer_meta :
    func : IndexAddGradInferMeta
  kernel :
    func : index_add_grad
    data_type : out_grad
  inplace : (out_grad -> x_grad)

1053
- backward_op : index_sample_grad
Z
zyfncg 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
  forward : index_sample (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_sample_grad
    data_type : out_grad
  no_need_buffer : x

1065
- backward_op : index_select_grad
1066 1067
  forward : index_select(Tensor x, Tensor index,  int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad,  int axis)
Z
zyfncg 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_select_grad
    data_type : x
  no_need_buffer : x

1077
- backward_op : instance_norm_double_grad
Z
zyfncg 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  forward : instance_norm_grad(Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, float epsilon) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float epsilon)
  output : Tensor(x_grad), Tensor(fwd_scale_grad), Tensor(grad_y_grad)
  infer_meta :
    func : InstanceNormDoubleGradInferMeta
  kernel :
    func : instance_norm_double_grad
    data_type : x
  optional : fwd_scale, grad_x_grad, grad_scale_grad, grad_bias_grad

1088
- backward_op : instance_norm_grad
Z
zyfncg 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
  forward : instance_norm(Tensor x, Tensor scale, Tensor bias, float epsilon) -> Tensor(y), Tensor(saved_mean), Tensor(saved_variance)
  args : (Tensor x, Tensor scale, Tensor saved_mean, Tensor saved_variance, Tensor y_grad, float epsilon)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : InstanceNormGradInferMeta
  kernel :
    func : instance_norm_grad
    data_type : x
  optional : scale
  backward : instance_norm_double_grad

1100
- backward_op : inverse_grad
1101 1102 1103 1104 1105 1106 1107 1108
  forward : inverse(Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta:
    func : InverseGradInferMeta
  kernel :
    func : inverse_grad

1109
- backward_op : kldiv_loss_grad
Z
zyfncg 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
  forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kldiv_loss_grad
  no_need_buffer : x

1120
- backward_op : kron_grad
Z
zyfncg 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  forward : kron (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : kron_grad
    data_type : out_grad

1131
- backward_op : kthvalue_grad
Z
zyfncg 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
  forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kthvalue_grad

1141
- backward_op : label_smooth_grad
Z
zyfncg 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150
  forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out)
  args : (Tensor out_grad, float epsilon)
  output : Tensor(label_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : label_smooth_grad

1151
- backward_op : layer_norm_grad
Z
zyfncg 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
  forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) -> Tensor(out), Tensor(mean), Tensor(variance)
  args : (Tensor x,  Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis, bool is_test)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : LayerNormGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : layer_norm_grad
    data_type : out_grad
  no_need_buffer : bias
  optional : scale, bias

1164
- backward_op : leaky_relu_double_grad
1165 1166
  forward : leaky_relu_grad (Tensor x, Tensor grad_out, float negative_slope) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, float negative_slope)
Z
zyfncg 已提交
1167 1168 1169 1170 1171 1172 1173 1174
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_x_grad]
  kernel :
    func : leaky_relu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1175
- backward_op : leaky_relu_grad
1176 1177
  forward : leaky_relu (Tensor x, float negative_slope) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float negative_slope)
Z
zyfncg 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : leaky_relu_grad
  backward : leaky_relu_double_grad
  inplace : (out_grad -> x_grad)

1187
- backward_op : lerp_grad
Z
zyfncg 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196
  forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : lerp_grad

1197
- backward_op : linear_interp_grad
1198
  forward : linear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
1199 1200 1201 1202 1203 1204 1205
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
1206
    func : linear_interp_grad
1207 1208
    data_type : output_grad

1209
- backward_op : log10_grad
Z
zyfncg 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  forward : log10 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log10_grad
  inplace : (out_grad -> x_grad)

1220
- backward_op : log1p_grad
Z
zyfncg 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
  forward : log1p (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log1p_grad
  inplace : (out_grad -> x_grad)

1231
- backward_op : log2_grad
Z
zyfncg 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
  forward : log2 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log2_grad
  inplace : (out_grad -> x_grad)

1242
- backward_op : log_double_grad
Z
zyfncg 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
  forward : log_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : log_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1253
- backward_op : log_grad
Z
zyfncg 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
  forward : log (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log_grad
  backward : log_double_grad
  inplace : (out_grad -> x_grad)

1265
- backward_op : log_loss_grad
Z
zyfncg 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274
  forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad, float epsilon)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : log_loss_grad

1275
- backward_op : log_softmax_grad
Z
zyfncg 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284
  forward : log_softmax(Tensor x,  int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad,  int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out]
  kernel :
    func : log_softmax_grad

1285
- backward_op : logcumsumexp_grad
Z
zyfncg 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294
  forward : logcumsumexp(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor x, Tensor out, Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  kernel :
    func : logcumsumexp_grad

1295
- backward_op : logit_grad
Z
zyfncg 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304
  forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float eps)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logit_grad

1305
- backward_op : logsigmoid_grad
Z
zyfncg 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  forward : logsigmoid (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logsigmoid_grad
  inplace : (out_grad -> x_grad)

1316
- backward_op : logsumexp_grad
Z
zyfncg 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

1326
- backward_op : lu_grad
L
Lin Manhui 已提交
1327 1328 1329 1330 1331 1332 1333 1334
  forward : lu (Tensor x, bool pivot) -> Tensor(out), Tensor(pivots), Tensor(infos)
  args : (Tensor x, Tensor out, Tensor pivots, Tensor out_grad, bool pivot)
  output : Tensor(x_grad)
  infer_meta :
    func : LUGradInferMeta
  kernel :
    func : lu_grad

1335
- backward_op : lu_unpack_grad
1336 1337
  forward : lu_unpack (Tensor x, Tensor y, bool unpack_ludata, bool unpack_pivots) -> Tensor(pmat), Tensor(l), Tensor(u)
  args : (Tensor x, Tensor y, Tensor l, Tensor u, Tensor pmat, Tensor l_grad, Tensor u_grad, bool unpack_ludata, bool unpack_pivots)
1338 1339 1340 1341 1342 1343
  output : Tensor(x_grad)
  infer_meta :
    func : LUUnpackGradInferMeta
  kernel :
    func : lu_unpack_grad

1344
- backward_op : margin_cross_entropy_grad
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
  forward : margin_cross_entropy (Tensor logits, Tensor label, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) -> Tensor(softmax), Tensor(loss)
  args : (Tensor logits, Tensor label, Tensor softmax, Tensor loss_grad, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale)
  output : Tensor(logits_grad)
  infer_meta :
    func : MarginCrossEntropyGradInferMeta
  kernel :
    func : margin_cross_entropy_grad
    data_type : softmax
  inplace : (softmax -> logits_grad)

1355
- backward_op : masked_select_grad
Z
zyfncg 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
  forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
  args : (Tensor x, Tensor mask, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : masked_select_grad
    data_type : x
  no_need_buffer : x

1367
- backward_op : matmul_double_grad
Z
zyfncg 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : matmul_double_grad
  backward : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad

1379
- backward_op : matmul_grad
Z
zyfncg 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
  backward : matmul_double_grad

1390
- backward_op : matmul_triple_grad
Z
zyfncg 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
  forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad, grad_grad_out_grad

1401
- backward_op : matrix_power_grad
Z
zyfncg 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
  forward : matrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : matrix_power_grad

1411
- backward_op : max_grad
1412 1413
  forward: max (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
1414 1415 1416 1417 1418 1419 1420
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad

1421
- backward_op : max_pool2d_with_index_grad
Z
zyfncg 已提交
1422 1423 1424 1425 1426 1427 1428 1429
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

1430
- backward_op : max_pool3d_with_index_grad
Z
zyfncg 已提交
1431 1432 1433 1434 1435 1436 1437 1438
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

1439
- backward_op : maximum_grad
Z
zyfncg 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad

1449
- backward_op : maxout_grad
Z
zyfncg 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458
  forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param: [x]
  kernel :
    func : maxout_grad

1459
- backward_op : mean_all_grad
Z
zyfncg 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

1469
- backward_op : mean_double_grad
1470 1471
  forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={},  bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={},  bool keepdim=false)
Z
zyfncg 已提交
1472
  output : Tensor(grad_out_grad)
1473
  invoke : mean(grad_x_grad, axis, keepdim)
Z
zyfncg 已提交
1474

1475
- backward_op : mean_grad
1476 1477
  forward: mean (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis={},  bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
  backward : mean_double_grad
  no_need_buffer : x

1487
- backward_op : meshgrid_grad
Z
zyfncg 已提交
1488 1489 1490 1491 1492 1493 1494 1495
  forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs)
  args : (Tensor[] inputs, Tensor[] outputs_grad)
  output : Tensor[](inputs_grad){inputs.size()}
  infer_meta :
    func : MeshgridGradInferMeta
  kernel :
    func : meshgrid_grad

1496
- backward_op : min_grad
1497 1498
  forward: min (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
1499 1500 1501 1502 1503 1504 1505
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

1506
- backward_op : minimum_grad
Z
zyfncg 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

1516
- backward_op : mish_grad
Z
zyfncg 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
  inplace : (out_grad -> x_grad)

1527
- backward_op : mode_grad
Z
zyfncg 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
  forward : mode(Tensor x,  int axis,  bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad,  int axis,  bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mode_grad

1537
- backward_op : multi_dot_grad
Z
zyfncg 已提交
1538 1539 1540 1541 1542 1543 1544 1545
  forward : multi_dot (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
  output : Tensor[](x_grad) {x.size()}
  infer_meta :
    func : MultiDotGradInferMeta
  kernel :
    func : multi_dot_grad

1546
- backward_op : multiplex_grad
1547 1548 1549
  forward : multiplex (Tensor[] inputs, Tensor index) -> Tensor(out)
  args : (Tensor[] inputs, Tensor index, Tensor out_grad)
  output : Tensor[](inputs_grad){inputs.size()}
Z
zyfncg 已提交
1550 1551
  infer_meta :
    func : MultiplexGradInferMeta
1552
    param : [index, out_grad]
Z
zyfncg 已提交
1553 1554
  kernel :
    func : multiplex_grad
1555
    param : [index, out_grad]
Z
zyfncg 已提交
1556

1557
- backward_op : multiply_double_grad
Z
zyfncg 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : multiply_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

1570
- backward_op : multiply_grad
Z
zyfncg 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
  backward : multiply_double_grad

1581
- backward_op : multiply_triple_grad
Z
zyfncg 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, x, y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_grad_out_grad

1592
- backward_op : nearest_interp_grad
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
  forward : nearest_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : nearest_interp_grad
    data_type : output_grad

1604
- backward_op : nll_loss_grad
Z
zyfncg 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
  forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight)
  args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction)
  output : Tensor(input_grad)
  infer_meta :
    func : NllLossGradInferMeta
  kernel :
    func : nll_loss_grad
    data_type : input
  optional : weight

1615
- backward_op : norm_grad
Z
zyfncg 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

1625
- backward_op : overlap_add_grad
1626 1627 1628 1629 1630 1631 1632 1633 1634
  forward : overlap_add(Tensor x, int hop_length, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int hop_length, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : OverlapAddGradInferMeta
  kernel :
    func : overlap_add_grad
    data_type : x

1635
- backward_op : p_norm_grad
Z
zyfncg 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
  forward : p_norm(Tensor x,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : p_norm_grad

1645
- backward_op : pad3d_double_grad
Z
zyfncg 已提交
1646 1647 1648 1649 1650 1651 1652 1653
  forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : Pad3dInferMeta
  kernel :
    func : pad3d

1654
- backward_op : pad3d_grad
Z
zyfncg 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad
  no_need_buffer : x
  backward : pad3d_double_grad

1666
- backward_op : pad_double_grad
1667 1668
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
1669 1670 1671 1672 1673 1674
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

1675
- backward_op : pad_grad
1676 1677
  forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
  backward : pad_double_grad

1688
- backward_op : pixel_shuffle_grad
Z
zyfncg 已提交
1689 1690 1691 1692 1693 1694 1695 1696
  forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
  args : (Tensor out_grad, int upscale_factor, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : PixelShuffleGradInferMeta
  kernel :
    func : pixel_shuffle_grad

1697
- backward_op : pool2d_double_grad
1698 1699
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn)
Z
zyfncg 已提交
1700 1701
  output : Tensor(grad_out_grad)
  infer_meta :
1702
    func : Pool2DInferMeta
1703
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
1704 1705
  kernel :
    func : pool2d_double_grad
1706 1707
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
    use_gpudnn : use_gpudnn
Z
zyfncg 已提交
1708

1709
- backward_op : pool2d_grad
1710 1711
  forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn)
Z
zyfncg 已提交
1712 1713
  output : Tensor(x_grad)
  infer_meta :
1714 1715
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
1716 1717
  kernel :
    func : pool2d_grad
1718 1719
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
    use_gpudnn : use_gpudnn
Z
zyfncg 已提交
1720 1721
  backward : pool2d_double_grad

1722
- backward_op : pool3d_grad
1723 1724
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm, bool use_gpudnn)
Z
zyfncg 已提交
1725 1726
  output : Tensor(x_grad)
  infer_meta :
1727 1728
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
1729 1730
  kernel :
    func : pool3d_grad
1731 1732
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
    use_gpudnn : use_gpudnn
Z
zyfncg 已提交
1733

1734
- backward_op : pow_grad
1735 1736
  forward : pow(Tensor x, Scalar y) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar y=-1)
Z
zyfncg 已提交
1737 1738 1739 1740 1741 1742 1743 1744
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pow_grad
  inplace : (out_grad -> x_grad)

1745
- backward_op : prelu_grad
Z
zyfncg 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754
  forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
  args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
  output : Tensor(x_grad), Tensor(alpha_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, alpha]
  kernel :
    func : prelu_grad

1755
- backward_op : psroi_pool_grad
Z
zyfncg 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : psroi_pool_grad
    data_type : x
  optional : boxes_num

# output is optional
1768
- backward_op : put_along_axis_grad
1769 1770 1771
  forward : put_along_axis (Tensor arr, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out)
  args : (Tensor arr, Tensor index, Tensor out_grad, int axis, str reduce)
  output : Tensor(arr_grad), Tensor(value_grad)
Z
zyfncg 已提交
1772 1773
  infer_meta :
    func : GeneralBinaryGradInferMeta
1774
    param : [arr, index]
Z
zyfncg 已提交
1775 1776 1777
  kernel :
    func : put_along_axis_grad

1778
- backward_op : qr_grad
Y
Yulong Ao 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787
  forward : qr (Tensor x, str mode) -> Tensor(q), Tensor(r)
  args : (Tensor x, Tensor q, Tensor r, Tensor q_grad, Tensor r_grad, str mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : qr_grad

1788
- backward_op : real_grad
Z
zyfncg 已提交
1789 1790 1791 1792 1793
  forward : real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : real_grad_impl(out_grad, x_grad)

1794
- backward_op : reciprocal_grad
Z
zyfncg 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
  forward : reciprocal (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : reciprocal_grad
  inplace : (out_grad -> x_grad)

1805
- backward_op : reduce_prod_grad
1806 1807
  forward : reduce_prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims,  bool keep_dim, bool reduce_all)
Z
zyfncg 已提交
1808 1809 1810 1811 1812 1813 1814
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : prod_grad

1815
- backward_op : relu6_grad
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
  forward : relu6 (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu6_grad
  inplace : (out_grad -> x_grad)

1826
- backward_op : relu_double_grad
Z
zyfncg 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
  forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1837
- backward_op : relu_grad
Z
zyfncg 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu_grad
  backward: relu_double_grad
  inplace : (out_grad -> x_grad)

1849
- backward_op : renorm_grad
S
seemingwang 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858
  forward : renorm (Tensor x, float p, int axis, float max_norm) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float p, int axis, float max_norm)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : renorm_grad

1859
- backward_op : repeat_interleave_grad
1860 1861
  forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int repeats, int axis)
S
seemingwang 已提交
1862 1863 1864 1865 1866 1867 1868
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_grad

1869
- backward_op : repeat_interleave_with_tensor_index_grad
1870 1871
  forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor repeats, Tensor out_grad, int axis)
S
seemingwang 已提交
1872 1873 1874 1875 1876 1877 1878 1879
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_with_tensor_index_grad
    data_type : x

1880
- backward_op : reshape_double_grad
Z
zyfncg 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
  no_need_buffer : grad_out
  inplace : (grad_x_grad -> grad_out_grad)

1892
- backward_op : reshape_grad
Z
zyfncg 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  backward : reshape_double_grad
  inplace : (out_grad -> x_grad)

1908
- backward_op : reverse_array_grad
1909 1910
  forward : reverse_array (Tensor[] x, IntArray axis) -> Tensor[](out)
  args : (Tensor[] out_grad, IntArray axis)
W
wanghuancoder 已提交
1911 1912 1913 1914 1915 1916
  output : Tensor[](x_grad){out_grad.size()}
  infer_meta :
    func : ReverseArrayInferMeta
  kernel :
    func : reverse

1917
- backward_op : reverse_grad
1918 1919
  forward : reverse (Tensor x, IntArray axis) -> Tensor(out)
  args : (Tensor out_grad, IntArray axis)
W
wanghuancoder 已提交
1920 1921 1922
  output : Tensor(x_grad)
  invoke : reverse(out_grad, axis)

Y
YuanRisheng 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
- backward_op : rnn_grad
  forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
  args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
  output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()}
  infer_meta :
    func : RnnGradInferMeta
    param : [x, pre_state, weight_list]
  kernel :
    func : rnn_grad
    data_type: out_grad
  optional : sequence_length

1935
- backward_op : roi_align_grad
Z
zyfncg 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
    data_type : boxes
  no_need_buffer : x
  optional : boxes_num

1948
- backward_op : roi_pool_grad
Z
zyfncg 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
    data_type : x
  optional : boxes_num

1960
- backward_op : roll_grad
Z
zyfncg 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
  forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roll_grad
    data_type : x
  no_need_buffer : x

1972
- backward_op : round_grad
Z
zyfncg 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
  forward : round(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : round_grad
  inplace : (out_grad -> x_grad)

1983
- backward_op : rsqrt_double_grad
Z
zyfncg 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
  forward : rsqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : rsqrt_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

1994
- backward_op : rsqrt_grad
Z
zyfncg 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
  forward : rsqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : rsqrt_grad
  backward : rsqrt_double_grad
  inplace : (out_grad -> x_grad)

2006
- backward_op : scale_grad
Z
zyfncg 已提交
2007
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
2008
  args : (Tensor out_grad, Scalar scale=1.0, bool bias_after_scale=true)
Z
zyfncg 已提交
2009 2010 2011
  output : Tensor(x_grad)
  invoke : scale(out_grad, scale, 0.0, bias_after_scale)

2012
- backward_op : scatter_grad
Z
zyfncg 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
  forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterGradInferMeta
    param : [index, updates, out_grad, overwrite]
  kernel :
    func : scatter_grad
  no_need_buffer : updates

2023
- backward_op : scatter_nd_add_grad
Z
zyfncg 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
  forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterNdAddGradInferMeta
    param : [index, updates, out_grad]
  kernel :
    func : scatter_nd_add_grad
  no_need_buffer : updates

2034
- backward_op : segment_pool_grad
Z
zyfncg 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : segment_pool_grad
    data_type : x
  optional : summed_ids

2046
- backward_op : selu_grad
Z
zyfncg 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055
  forward : selu (Tensor x, float scale, float alpha) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float scale, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : selu_grad

2056
- backward_op : sigmoid_cross_entropy_with_logits_grad
Z
zyfncg 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
  forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sigmoid_cross_entropy_with_logits_grad
  inplace : (out_grad -> x_grad)

2067
- backward_op : sigmoid_double_grad
Z
zyfncg 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
  forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, fwd_grad_out]
  kernel :
    func : sigmoid_double_grad
  backward : sigmoid_triple_grad
  inplace : (grad_x_grad -> fwd_grad_out_grad)

2079
- backward_op : sigmoid_grad
Z
zyfncg 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
  forward : sigmoid (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sigmoid_grad
  backward : sigmoid_double_grad
  inplace : (out_grad -> x_grad)

2091
- backward_op : sigmoid_triple_grad
Z
zyfncg 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
  forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, fwd_grad_out, grad_grad_x]
  kernel :
    func : sigmoid_triple_grad
  optional : grad_grad_out_grad
  inplace : (grad_grad_x -> fwd_grad_out_grad)

2103 2104 2105 2106 2107 2108
- backward_op : sign_grad
  forward : sign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : scale(out_grad, 0.0, 0.0, true)

2109
- backward_op : silu_grad
Z
zyfncg 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
  forward : silu (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : silu_grad
  inplace : (out_grad -> x_grad)

2120
- backward_op : sin_grad
Z
zyfncg 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
  forward : sin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sin_grad
  inplace : (out_grad -> x_grad)

2131
- backward_op : sinh_grad
Z
zyfncg 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
  forward : sinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sinh_grad
  inplace : (out_grad -> x_grad)

2142
- backward_op : slice_double_grad
2143 2144 2145
  forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
  args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(grad_out_grad)
2146
  invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
2147

2148
- backward_op : slice_grad
Z
zyfncg 已提交
2149 2150 2151 2152 2153 2154 2155 2156
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
2157
  backward : slice_double_grad
Z
zyfncg 已提交
2158 2159
  no_need_buffer : input

2160
- backward_op : slogdet_grad
2161 2162 2163 2164 2165 2166 2167 2168 2169
  forward : slogdet (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : slogdeterminant_grad

2170
- backward_op : softmax_grad
Z
zyfncg 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
    use_gpudnn : true

2181
- backward_op : softplus_grad
W
Wang Bojun 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
  forward : softplus (Tensor x, float beta, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float beta, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : softplus_grad
  inplace : (out_grad -> x_grad)

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
- backward_op : softshrink_grad
  forward : softshrink (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : soft_shrink_grad
  inplace : (out_grad -> x_grad)

2203
- backward_op : softsign_grad
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
  forward : softsign (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : softsign_grad
  inplace : (out_grad -> x_grad)

2214
- backward_op : spectral_norm_grad
2215 2216 2217 2218 2219 2220 2221 2222 2223
  forward : spectral_norm (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps) -> Tensor(out)
  args : (Tensor weight, Tensor u, Tensor v, Tensor out_grad, int dim, int power_iters, float eps)
  output : Tensor(weight_grad)
  infer_meta :
    func : SpectralNormGradInferMeta
  kernel :
    func : spectral_norm_grad
    data_type : out_grad

2224
- backward_op : split_grad
Z
zyfncg 已提交
2225 2226 2227 2228
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
C
Charles-hit 已提交
2229

2230
- backward_op : split_with_num_grad
C
Charles-hit 已提交
2231 2232 2233 2234
  forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
Z
zyfncg 已提交
2235 2236
# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future.

2237
- backward_op : sqrt_double_grad
Z
zyfncg 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
  forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : sqrt_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

2248
- backward_op : sqrt_grad
Z
zyfncg 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
  forward : sqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sqrt_grad
  backward : sqrt_double_grad
  inplace : (out_grad -> x_grad)

2260
- backward_op : square_double_grad
Z
zyfncg 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
  forward : square_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : square_double_grad
  inplace : (grad_x_grad -> grad_out_grad)

2271
- backward_op : square_grad
Z
zyfncg 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
  forward : square (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : square_grad
  backward : square_double_grad
  inplace : (out_grad -> x_grad)

2283
- backward_op : squared_l2_norm_grad
2284 2285 2286 2287 2288 2289 2290 2291 2292
  forward : squared_l2_norm(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : squared_l2_norm_grad

2293
- backward_op : squeeze_double_grad
2294 2295
  forward : squeeze_grad(Tensor xshape, Tensor grad_out, IntArray axis) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis)
Z
zyfncg 已提交
2296
  output : Tensor(grad_out_grad)
2297
  invoke: squeeze(grad_x_grad, axis)
Z
zyfncg 已提交
2298

2299
- backward_op : squeeze_grad
2300 2301
  forward : squeeze(Tensor x, IntArray axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad, IntArray axis)
Z
zyfncg 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : squeeze_grad
  inplace : (out_grad -> x_grad)
  backward: squeeze_double_grad

2311
- backward_op : stack_grad
Z
zyfncg 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
  forward : stack (Tensor[] x, int axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, int axis)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : StackGradInferMeta
    param: [out_grad, axis]
  kernel :
    func : stack_grad
    param : [out_grad, axis]
  no_need_buffer : x

2323
- backward_op : strided_slice_grad
Z
zyfncg 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
  no_need_buffer : x

2334
- backward_op : subtract_double_grad
Z
zyfncg 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out
  inplace : (grad_x_grad -> grad_out_grad)

2347
- backward_op : subtract_grad
Z
zyfncg 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
  no_need_buffer : x, y
  backward : subtract_double_grad
  inplace : (out_grad -> x_grad)

2360
- backward_op : sum_double_grad
2361 2362
  forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false)
Z
zyfncg 已提交
2363
  output : Tensor(grad_out_grad)
2364
  invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim)
Z
zyfncg 已提交
2365

2366
- backward_op : sum_grad
2367 2368
  forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false)
Z
zyfncg 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
  no_need_buffer : x
  backward : sum_double_grad

2378
- backward_op : svd_grad
2379 2380
  forward : svd (Tensor x, bool full_matrices) -> Tensor(u), Tensor(s), Tensor(vh)
  args : (Tensor x, Tensor u, Tensor vh, Tensor s, Tensor u_grad, Tensor vh_grad, Tensor s_grad, bool full_matrices)
2381 2382 2383 2384 2385 2386 2387 2388
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : svd_grad
  optional: u_grad, vh_grad, s_grad

2389
- backward_op : swish_grad
Z
zyfncg 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
  forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
  inplace : (out_grad -> x_grad)

2400
- backward_op : sync_batch_norm_grad
2401
  forward : sync_batch_norm_ (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
2402
  args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
2403 2404 2405 2406 2407 2408 2409
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : sync_batch_norm_grad
    data_type : out_grad
2410
  optional : reserve_space
2411

2412
- backward_op : take_along_axis_grad
2413 2414 2415
  forward : take_along_axis (Tensor arr, Tensor indices, int axis) -> Tensor(out)
  args : (Tensor arr, Tensor indices, Tensor out_grad, int axis)
  output : Tensor(arr_grad)
Z
zyfncg 已提交
2416 2417
  infer_meta :
    func : UnchangedInferMeta
2418
    param : [arr]
Z
zyfncg 已提交
2419 2420 2421
  kernel :
    func : take_along_axis_grad

2422
- backward_op : tan_grad
Z
zyfncg 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
  forward : tan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tan_grad
  inplace : (out_grad -> x_grad)

2433
- backward_op : tanh_double_grad
Z
zyfncg 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
  forward : tanh_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : tanh_double_grad
  backward : tanh_triple_grad
  inplace : (grad_x_grad -> grad_out_grad)

2445
- backward_op : tanh_grad
Z
zyfncg 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
  forward : tanh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : tanh_grad
  backward : tanh_double_grad
  inplace : (out_grad -> x_grad)

2457
- backward_op : tanh_shrink_grad
Z
zyfncg 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
  forward : tanh_shrink (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tanh_shrink_grad
  inplace : (out_grad -> x_grad)

2468
- backward_op : tanh_triple_grad
Z
zyfncg 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
  forward : tanh_double_grad (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward) -> Tensor(grad_out_new), Tensor(grad_out_grad)
  args : (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward, Tensor grad_out_new_grad, Tensor grad_out_grad_grad)
  output : Tensor(out_grad), Tensor(grad_out_forward_grad), Tensor(grad_x_grad_forward_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, out, grad_x_grad_forward]
  kernel :
    func : tanh_triple_grad
  inplace : (grad_x_grad_forward -> grad_out_forward_grad)

2479
- backward_op : temporal_shift_grad
C
ccrrong 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488
  forward : temporal_shift(Tensor x, int seg_num, float shift_ratio, str data_format_str) -> Tensor(out)
  args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format_str)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : temporal_shift_grad

2489
- backward_op : thresholded_relu_grad
Z
zyfncg 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
  forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : thresholded_relu_grad
  inplace : (out_grad -> x_grad)

2500
- backward_op : tile_double_grad
Z
zyfncg 已提交
2501 2502 2503
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
2504
  invoke : tile(grad_x_grad, repeat_times)
Z
zyfncg 已提交
2505

2506
- backward_op : tile_grad
Z
zyfncg 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
  no_need_buffer : x
  backward : tile_double_grad

2518 2519
- backward_op : topk_grad
  forward : topk (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices)
Z
zyfncg 已提交
2520 2521 2522 2523 2524 2525 2526 2527
  args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : top_k_grad

2528
- backward_op : transpose_double_grad
2529 2530
  forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] perm)
Z
zyfncg 已提交
2531
  output : Tensor(grad_out_grad)
2532
  invoke : transpose(grad_x_grad, perm)
Z
zyfncg 已提交
2533

2534
- backward_op : transpose_grad
2535 2536
  forward : transpose (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor out_grad, int[] perm)
Z
zyfncg 已提交
2537 2538 2539
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
2540
    param : [out_grad, perm]
Z
zyfncg 已提交
2541 2542 2543 2544
  kernel :
    func : transpose_grad
  backward : transpose_double_grad

2545
- backward_op : triangular_solve_grad
Z
zyfncg 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554
  forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : triangular_solve_grad

2555
- backward_op : tril_triu_grad
Z
zyfncg 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564
  forward : tril_triu(Tensor x,  int diagonal,  bool lower) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal,  bool lower)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : tril_triu_grad

2565
- backward_op : trilinear_interp_grad
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
  forward : trilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
  args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  optional: out_size, size_tensor, scale_tensor
  kernel :
    func : trilinear_interp_grad
    data_type : output_grad

2577
- backward_op : unbind_grad
Z
zyfncg 已提交
2578 2579 2580 2581 2582
  forward : unbind (Tensor input, int axis) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(input_grad)
  invoke : stack(out_grad, axis)

2583
- backward_op : unfold_grad
Z
zyfncg 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
  forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : unfold_grad
  no_need_buffer : x

2594
- backward_op : uniform_random_inplace_grad
2595 2596 2597 2598 2599 2600 2601 2602 2603
  forward : uniform_random_inplace(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) -> Tensor(out)
  args : (Tensor out_grad, float min, float max, int seed, int diag_num, int diag_step, float diag_val)
  output : Tensor(x_grad)
  infer_meta :
    func : UniformRandomInplaceGradInferMeta
  kernel :
    func : uniform_random_inplace_grad
  inplace : (out_grad -> x_grad)

2604
- backward_op : unsqueeze_double_grad
Z
zyfncg 已提交
2605 2606 2607 2608 2609
  forward : unsqueeze_grad(Tensor xshape, Tensor grad_out, IntArray axes) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axes)
  output : Tensor(grad_out_grad)
  invoke : unsqueeze(grad_x_grad, axes)

2610
- backward_op : unsqueeze_grad
Z
zyfncg 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
  forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad, IntArray axes)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : unsqueeze_grad
    param: [xshape, out_grad]
  inplace : (out_grad -> x_grad)
  backward : unsqueeze_double_grad

2623
- backward_op : unstack_grad
2624 2625 2626 2627 2628 2629 2630 2631 2632
  forward : unstack (Tensor x, int axis, int num) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnStackGradInferMeta
    param : [out_grad, axis]
  kernel :
    func : unstack_grad

2633
- backward_op : warpctc_grad
2634
  forward : warpctc (Tensor logits, Tensor label, Tensor logits_length, Tensor labels_length, int blank, bool norm_by_times) -> Tensor(loss), Tensor(warpctcgrad)
Z
Zhong Hui 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
  args : (Tensor logits, Tensor logits_length, Tensor warpctcgrad, Tensor loss_grad, int blank, bool norm_by_times)
  output : Tensor(logits_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [logits]
  kernel :
    func : warpctc_grad
  optional : logits_length
  no_need_buffer : logits

2645
- backward_op : where_grad
Z
zyfncg 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654
  forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : where_grad
  no_need_buffer : x, y
2655

2656
- backward_op : yolov3_loss_grad
2657 2658 2659 2660 2661 2662 2663 2664
  forward : yolov3_loss(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask)
  args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0)
  output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad)
  infer_meta :
    func : Yolov3LossGradInferMeta
  kernel :
    func : yolov3_loss_grad
  optional : gt_score
X
xiaoting 已提交
2665

2666
- backward_op: fold_grad
X
xiaoting 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
  forward: fold (Tensor x, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args: (Tensor x, Tensor out_grad, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: fold_grad
  no_need_buffer : x

2677
- backward_op: unpool3d_grad
X
xiaoting 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
  forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool3d_grad
    data_type: x

2688
- backward_op: unpool_grad
2689 2690
  forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding,  IntArray output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
X
xiaoting 已提交
2691 2692 2693 2694 2695 2696 2697
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool_grad
    data_type: x