distribute_transpiler.py 54.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.

Use different methods to split trainable variables to different
parameter servers.

Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
4. append send_op to send splited variables to server and fetch
    params(splited blocks or origin param) from server.
5. append concat_op to merge splited blocks to update local weights.

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
38

T
typhoonzero 已提交
39
from __future__ import print_function
40

T
typhoonzero 已提交
41
import math
42
import numpy as np
43

Y
Yancey1989 已提交
44
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
45
from .. import core, framework
T
typhoonzero 已提交
46 47 48
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
49
from details import *
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
57 58


T
typhoonzero 已提交
59 60 61 62 63 64
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
65

T
typhoonzero 已提交
66 67
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
68 69


70 71 72 73
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


74
def slice_variable(var_list, slice_count, min_block_size=8192):
T
typhoonzero 已提交
75
    """
76 77 78 79 80 81
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
82
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
83 84 85

    Args:
        var_list (list): List of variables.
86 87
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
88 89
        min_block_size (int): Minimum splitted block size.
    Returns:
90
        blocks (list[(varname, block_id, current_block_size)]): A list
91
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
92 93 94
    """
    blocks = []
    for var in var_list:
95
        split_count = slice_count
T
typhoonzero 已提交
96 97 98 99
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
100
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
101 102 103 104 105 106 107 108 109
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
110
        # update split_count after aligning
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
120
class DistributeTranspiler:
121
    def _has_distributed_lookup_table(self):
122 123 124 125 126 127
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
128
        for op in self.origin_program.global_block().ops:
129 130 131 132 133 134 135 136 137 138 139 140
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

141
        return len(distributed_lookup_table_ops) > 0
142

143 144 145 146 147
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
148 149 150 151 152 153
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
154
                if grad.name != grad_var_name(self.table_name)
155 156 157 158 159 160
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
161
            if self.sync_mode:
162
                self.trainer_side_table_grad_list = [
163 164
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
165
                        (table_grad_var.name, self.trainer_id, index),
166 167 168 169 170 171
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
172
                self.trainer_side_table_grad_list = [
173 174 175 176 177 178 179
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
180

181
    def _init_splited_vars(self, slice_var_up):
182 183 184 185 186 187 188 189
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
Y
yi.wu 已提交
190
        param_grad_set = set()
191 192 193 194
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
Y
yi.wu 已提交
195 196 197 198 199 200
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)
201 202 203 204

        self._update_dist_lookup_table_vars(param_list, grad_list,
                                            self.params_grads)

205 206 207 208 209
        if slice_var_up:
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
            param_blocks = slice_variable(param_list,
210
                                          len(self.pserver_endpoints))
211
        else:
212
            # when we do NOT slice var up into blocks, we will always slice params
213
            # grads into one block.
214 215
            grad_blocks = slice_variable(grad_list, 1)
            param_blocks = slice_variable(param_list, 1)
Y
update  
Yancey1989 已提交
216
        assert (len(grad_blocks) == len(param_blocks))
217

218 219 220 221 222 223 224 225
        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
Y
update  
Yancey1989 已提交
226 227 228
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
229 230
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]
231

232
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
233
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
234 235 236 237 238 239 240 241 242
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

243 244 245 246 247
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
248
                  slice_var_up=True,
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
                  split_method=RoundRobin,
                  sync_mode=True):
        """
        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
282
        self._init_splited_vars(slice_var_up)
283

Y
Yancey1989 已提交
284 285
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
286
        send_vars = []
287 288 289 290 291 292

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
293
        grad_var_mapping_items = self.grad_var_mapping.items()
294
        if not slice_var_up:
295 296 297
            np.random.shuffle(grad_var_mapping_items)

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
298
            eplist = ps_dispatcher.dispatch(splited_vars)
299

300
            if not slice_var_up:
301 302
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
303 304 305 306 307 308 309 310 311
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
312
                index += 1
Y
Yancey1989 已提交
313 314 315 316
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
317
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
318
                index=index + 1,
Y
Yancey1989 已提交
319
                type="send_vars",
Y
update  
Yancey1989 已提交
320
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
321 322 323 324 325
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
326 327
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
328 329 330 331 332

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
333
                outputs={},
Y
Yancey1989 已提交
334 335
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
336 337
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
338
                })
Y
Yancey1989 已提交
339 340 341

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
342
        for _, var in enumerate(send_vars):
343
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
344
        ps_dispatcher.reset()
Y
Yancey1989 已提交
345 346
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
347
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
348 349
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
350

Y
Yancey1989 已提交
351
        # step4: Concat the parameters splits together after recv.
352
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
353 354 355 356 357 358 359 360
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
361 362 363 364 365
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
366

T
typhoonzero 已提交
367
        program.global_block().append_op(
Y
Yancey1989 已提交
368 369
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
370
            outputs={},
Q
qiaolongfei 已提交
371 372
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
373
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
374
            })
Y
Yancey1989 已提交
375

376
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
377 378
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
379
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
380
            program.global_block().append_op(
T
typhoonzero 已提交
381
                type="concat",
T
typhoonzero 已提交
382
                inputs={"X": splited_var},
T
typhoonzero 已提交
383
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
384
                attrs={"axis": 0})
T
typhoonzero 已提交
385

386
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
387 388
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
389
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
390

T
typhoonzero 已提交
391 392
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
393
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
394
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
395 396
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
397 398 399 400

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
401
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
402 403 404 405 406 407
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
408
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
409 410 411 412 413 414 415 416
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
417 418 419 420 421
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
422 423 424 425 426 427 428 429 430
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
431
            if self.sync_mode and self.trainer_num > 1:
432
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
433 434 435 436 437 438 439 440 441
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
442

Q
qiaolongfei 已提交
443
        # step 3
444
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
445 446 447
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
448
        # step 3.2
T
typhoonzero 已提交
449 450 451 452
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
453 454
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
455
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
456
        # step 3.3
T
typhoonzero 已提交
457
        # Iterate through the ops, and if an op and the optimize ops
458
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
459
        # append it into the sub program.
T
typhoonzero 已提交
460 461 462 463 464

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
465 466
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
467

468 469
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var):
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
470
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
471
                                         self.origin_program, merged_var)
T
typhoonzero 已提交
472
            else:
473 474 475 476 477 478 479
                self._append_pserver_non_opt_ops(block, op, endpoint)

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
480

481
        # append lr decay ops to the child block if exists
482 483
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
484 485
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
486
            for _, op in enumerate(lr_ops):
487
                self._append_pserver_non_opt_ops(lr_decay_block, op, endpoint)
488

T
typhoonzero 已提交
489
        # append op to the current block
Q
qiaolongfei 已提交
490
        grad_to_block_id = []
Q
qiaolongfei 已提交
491
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
492
        for idx, opt_op in enumerate(opt_op_on_pserver):
493
            per_opt_block = pserver_program.create_block(pre_block_idx)
494 495 496 497 498 499 500 501
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
502 503
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
504
                if ufind.is_connected(op, opt_op) and op not in global_ops:
505 506
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
                                           merged_var)
T
typhoonzero 已提交
507 508

        # append global ops
509
        if global_ops:
Q
qiaolongfei 已提交
510 511 512
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
513
                __append_optimize_op__(glb_op, opt_state_block,
514
                                       grad_to_block_id, None)
T
typhoonzero 已提交
515

516 517 518 519
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
520
            table_opt_block = self._create_table_optimize_block(
521
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
522
            prefetch_block = self._create_prefetch_block(
523
                pserver_index, pserver_program, table_opt_block)
524 525 526 527 528 529 530 531 532

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
533 534 535 536 537 538
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
539
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
540
                "endpoint": endpoint,
541
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
542 543
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
544
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
545
            })
546

T
typhoonzero 已提交
547 548 549 550 551 552 553 554 555 556
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
557
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
571
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

604 605
    # ====================== private transpiler functions =====================

606
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
607 608
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
609 610 611 612 613 614 615 616 617 618 619 620
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

621
                    lookup_table_op_index = list(all_ops).index(op)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
640
                        index=lookup_table_op_index,
641 642 643 644 645 646 647 648 649 650 651
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
652
                        index=lookup_table_op_index + 1,
653 654
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
655 656
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
657
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
658 659
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
660 661 662

                    # insert concat_op
                    program.global_block().insert_op(
663 664 665 666 667 668 669 670 671
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
                            'X': self.prefetch_output_vars
                        },
672 673 674 675 676
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
677
                        })
678 679

                    # delete lookup_table_op
680
                    delete_ops(program.global_block(), [op])
681 682 683
                    # break for loop
                    break

Y
Yancey1989 已提交
684
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
685 686 687
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
688
        table_grad_name = grad_var_name(self.table_name)
689 690 691 692 693 694 695 696 697 698
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
699
                    outputs={"Out": self.trainer_side_table_grad_list})
700 701 702
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
703
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
704 705 706 707 708 709
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
730
            type="lookup_sparse_table",
731 732 733 734 735 736 737 738 739 740 741
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
742
                                     pre_block_idx, grad_to_block_id):
743 744
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
745 746 747 748 749 750 751 752
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
753 754 755
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
756
            self.origin_program.global_block().vars[grad_var_name(
757
                self.table_name)])
758 759 760 761 762 763

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
764
        table_opt_block = pserver_program.create_block(pre_block_idx)
765 766 767
        # only support sgd now
        assert table_opt_op.type == "sgd"

768 769 770
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
771
            pserver_side_table_grad_list = [
772 773 774 775 776 777 778 779 780
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

781
            # append sum op for pserver_side_table_grad_list
782 783
            table_opt_block.append_op(
                type="sum",
784
                inputs={"X": pserver_side_table_grad_list},
785
                outputs={"Out": [grad_var]})
786 787
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
788
            origin_grad_name = grad_var.name
789 790
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
791 792
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
793
                                 " grad_var:" + grad_var.name)
794 795
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

811 812 813
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

814 815
        return table_opt_block

T
typhoonzero 已提交
816 817 818 819 820
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
821
        Create vars for each split.
T
typhoonzero 已提交
822 823
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
824 825 826 827
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
828 829
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
830
                from original var name to each var split.
T
typhoonzero 已提交
831
        """
832 833

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
834
        block_map = dict()
835

T
typhoonzero 已提交
836
        var_mapping = dict()
T
typhoonzero 已提交
837 838 839 840 841
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
Y
yi.wu 已提交
842 843 844
        # Do not remove this important debug message:
        print("block map: %s" % block_map)

T
typhoonzero 已提交
845
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
846
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
847
            if len(splited) == 1:
848
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
849 850 851 852 853 854 855 856
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
857
                continue
T
typhoonzero 已提交
858 859

            var_mapping[varname] = []
T
typhoonzero 已提交
860 861 862 863
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
864

T
typhoonzero 已提交
865
            for i, block in enumerate(splited):
T
typhoonzero 已提交
866
                size = block[1]
T
typhoonzero 已提交
867 868 869 870
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
871
                new_var_name = ""
872
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
873 874 875 876 877
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
878
                var = program.global_block().create_var(
T
typhoonzero 已提交
879 880
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
881
                    dtype=orig_var.dtype,
882
                    type=orig_var.type,
T
typhoonzero 已提交
883
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
884
                var_mapping[varname].append(var)
T
typhoonzero 已提交
885
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
886
        return var_mapping
T
done  
typhoonzero 已提交
887

888 889 890 891 892 893 894 895 896 897 898
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
899 900 901 902 903 904 905
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
906
            persistable=persistable)
T
done  
typhoonzero 已提交
907

Y
Yancey1989 已提交
908
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
933

T
typhoonzero 已提交
934 935 936 937
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
938
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

961 962
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
963
        orig_var_name = ""
964 965 966 967 968 969 970 971 972 973
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
974
        else:
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1002
        else:
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var})
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1026

1027
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1028
                            grad_to_block_id, origin_program, merged_var):
1029
        program = optimize_block.program
T
typhoonzero 已提交
1030
        pserver_block = program.global_block()
T
typhoonzero 已提交
1031
        new_inputs = dict()
T
typhoonzero 已提交
1032 1033
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1034
        for key in opt_op.input_names:
T
typhoonzero 已提交
1035 1036 1037 1038 1039 1040
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1041
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1042 1043 1044 1045
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1046
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1047
                    name=param_block.name,
T
typhoonzero 已提交
1048
                    persistable=True,
T
typhoonzero 已提交
1049 1050 1051
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1052
            elif key == "LearningRate":
1053
                # learning rate variable has already be created by non-optimize op,
1054
                # don't create it once again.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1066

T
typhoonzero 已提交
1067
        for key in opt_op.input_names:
1068 1069
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1070
                continue
1071
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1072 1073 1074 1075
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1076
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1077 1078 1079 1080 1081
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1082

1083
        # change output's ParamOut variable
1084 1085
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1086
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1087

1088
        optimize_block.append_op(
T
typhoonzero 已提交
1089 1090
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1091
            outputs=outputs,
T
typhoonzero 已提交
1092 1093
            attrs=opt_op.attrs)

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op, endpoint):
1104
        program = optimize_block.program
1105
        # Append the ops for parameters that do not need to be optimized/updated
1106 1107
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1108
        for key, varlist in inputs.iteritems():
1109 1110
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1111
            for var in varlist:
1112 1113 1114 1115 1116 1117 1118
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1119
                    program.global_block().create_var(
T
typhoonzero 已提交
1120 1121 1122 1123 1124
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1125 1126
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1127
        for key, varlist in outputs.iteritems():
1128 1129 1130
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1131 1132 1133 1134 1135 1136
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1137

1138
        optimize_block.append_op(
T
typhoonzero 已提交
1139
            type=opt_op.type,
T
typhoonzero 已提交
1140 1141
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1142 1143
            attrs=opt_op.attrs)

1144 1145 1146 1147
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1161 1162
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1163
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1164
        op2_output_names = op2.desc.output_arg_names()
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1193 1194
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1195 1196 1197 1198 1199 1200 1201
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1202
        if op.input("Param")[0] in param_names:
1203 1204 1205
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1206
                param = op.input("Param")[0]
T
typhoonzero 已提交
1207
                if same_or_split_var(n, param) and n != param:
1208 1209 1210
                    return True
            return False

T
typhoonzero 已提交
1211
    def _get_input_map_from_op(self, varmap, op):
1212
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1225
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1236 1237 1238 1239 1240 1241

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1242
            if self._is_optimizer_op(op):
1243 1244 1245 1246
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1247
        block = self.origin_program.global_block()
1248 1249 1250 1251 1252
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1253

1254 1255 1256 1257 1258
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1259
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1260 1261 1262 1263 1264 1265
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1266 1267
                    # we only need to append op for once
                    break
1268
        return lr_ops
Y
Yancey1989 已提交
1269 1270

    def _get_optimize_pass(self):
1271 1272 1273 1274 1275 1276
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1277 1278 1279
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1280
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1281
        for op in block.ops:
1282
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1283
                opt_ops.append(op)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
1295 1296
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1297 1298 1299
            else:
                pass
        return opt_ops, params_grads
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False