“c8d0791accb7fbceda308756e6271e12e233c063”上不存在“git@gitcode.net:RobotFutures/Paddle.git”
distribute_transpiler.py 53.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.

Use different methods to split trainable variables to different
parameter servers.

Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
4. append send_op to send splited variables to server and fetch
    params(splited blocks or origin param) from server.
5. append concat_op to merge splited blocks to update local weights.

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
38

T
typhoonzero 已提交
39
from __future__ import print_function
40

T
typhoonzero 已提交
41
import math
42
import numpy as np
43

Y
Yancey1989 已提交
44
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
45
from .. import core, framework
T
typhoonzero 已提交
46 47 48
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
49
from details import *
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
57 58


T
typhoonzero 已提交
59 60 61 62 63 64
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
65

T
typhoonzero 已提交
66 67
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
68 69


70 71 72 73
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


74
def split_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
75
    """
76 77 78 79 80 81
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
82
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
83 84 85 86 87 88 89

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
90
        blocks (list[(varname, block_id, current_block_size)]): A list
91
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
92 93 94
    """
    blocks = []
    for var in var_list:
95
        split_count = service_count
T
typhoonzero 已提交
96 97 98 99
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
100
        if max_pserver_count < service_count:
T
typhoonzero 已提交
101 102 103 104 105 106 107 108 109
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
110
        # update split_count after aligning
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
120
class DistributeTranspiler:
121
    def _has_distributed_lookup_table(self):
122 123 124 125 126 127
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
128
        for op in self.origin_program.global_block().ops:
129 130 131 132 133 134 135 136 137 138 139 140
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

141
        return len(distributed_lookup_table_ops) > 0
142

143 144 145 146 147
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
148 149 150 151 152 153
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
154
                if grad.name != grad_var_name(self.table_name)
155 156 157 158 159 160
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
161
            if self.sync_mode:
162
                self.trainer_side_table_grad_list = [
163 164
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
165
                        (table_grad_var.name, self.trainer_id, index),
166 167 168 169 170 171
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
172
                self.trainer_side_table_grad_list = [
173 174 175 176 177 178 179
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    def _init_splited_vars(self, split_method):
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)

        self._update_dist_lookup_table_vars(param_list, grad_list,
                                            self.params_grads)

200 201 202 203 204 205 206 207 208 209
        if align_var_to_block:
            grad_blocks = split_dense_variable(grad_list,
                                               len(pserver_endpoints))
            param_blocks = split_dense_variable(param_list,
                                                len(pserver_endpoints))
        else:
            # when we do NOT align var to block, we will always split params
            # grads into one block.
            grad_blocks = split_dense_variable(grad_list, 1)
            param_blocks = split_dense_variable(param_list, 1)
Y
update  
Yancey1989 已提交
210
        assert (len(grad_blocks) == len(param_blocks))
211 212 213 214 215 216 217 218
        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
Y
update  
Yancey1989 已提交
219 220 221
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
222 223
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]
224

225
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
226
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
227 228 229 230 231 232 233 234 235
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

236 237 238 239 240
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
241
                  align_var_to_block=True,
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                  split_method=RoundRobin,
                  sync_mode=True):
        """
        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
        self._init_splited_vars(split_method)

Y
Yancey1989 已提交
277 278
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
279
        send_vars = []
280 281 282 283 284 285

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
286
        grad_var_mapping_items = self.grad_var_mapping.items()
287 288 289 290
        if not align_var_to_block:
            np.random.shuffle(grad_var_mapping_items)

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
291
            eplist = ps_dispatcher.dispatch(splited_vars)
292 293 294 295

            if not align_var_to_block:
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
296 297 298 299 300 301 302 303 304
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
305
                index += 1
Y
Yancey1989 已提交
306 307 308 309
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
310
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
311
                index=index + 1,
Y
Yancey1989 已提交
312
                type="send_vars",
Y
update  
Yancey1989 已提交
313
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
314 315 316 317 318
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
319 320
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
321 322 323 324 325

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
326
                outputs={},
Y
Yancey1989 已提交
327 328
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
329 330
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
331
                })
Y
Yancey1989 已提交
332 333 334

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
335
        for _, var in enumerate(send_vars):
336
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
337
        ps_dispatcher.reset()
Y
Yancey1989 已提交
338 339
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
340
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
341 342
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
343

Y
Yancey1989 已提交
344
        # step4: Concat the parameters splits together after recv.
345
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
346 347 348 349 350 351 352 353
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
354 355 356 357 358
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
359

T
typhoonzero 已提交
360
        program.global_block().append_op(
Y
Yancey1989 已提交
361 362
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
363
            outputs={},
Q
qiaolongfei 已提交
364 365
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
366
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
367
            })
Y
Yancey1989 已提交
368

369
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
370 371
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
372
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
373
            program.global_block().append_op(
T
typhoonzero 已提交
374
                type="concat",
T
typhoonzero 已提交
375
                inputs={"X": splited_var},
T
typhoonzero 已提交
376
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
377
                attrs={"axis": 0})
T
typhoonzero 已提交
378

379
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
380 381
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
382
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
383

T
typhoonzero 已提交
384 385
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
386
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
387
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
388 389
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
390 391 392 393

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
394
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
395 396 397 398 399 400
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
401
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
402 403 404 405 406 407 408 409
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
410 411 412 413 414
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
415 416 417 418 419 420 421 422 423
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
424
            if self.sync_mode and self.trainer_num > 1:
425
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
426 427 428 429 430 431 432 433 434
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
435

Q
qiaolongfei 已提交
436
        # step 3
437
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
438 439 440
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
441
        # step 3.2
T
typhoonzero 已提交
442 443 444 445
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
446 447
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
448
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
449
        # step 3.3
T
typhoonzero 已提交
450
        # Iterate through the ops, and if an op and the optimize ops
451
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
452
        # append it into the sub program.
T
typhoonzero 已提交
453 454 455 456 457

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
458 459
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
460

461 462
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var):
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
463
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
464
                                         self.origin_program, merged_var)
T
typhoonzero 已提交
465
            else:
466 467 468 469 470 471 472
                self._append_pserver_non_opt_ops(block, op, endpoint)

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
473

474
        # append lr decay ops to the child block if exists
475 476
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
477 478
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
479
            for _, op in enumerate(lr_ops):
480
                self._append_pserver_non_opt_ops(lr_decay_block, op, endpoint)
481

T
typhoonzero 已提交
482
        # append op to the current block
Q
qiaolongfei 已提交
483
        grad_to_block_id = []
Q
qiaolongfei 已提交
484
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
485
        for idx, opt_op in enumerate(opt_op_on_pserver):
486
            per_opt_block = pserver_program.create_block(pre_block_idx)
487 488 489 490 491 492 493 494
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
495 496
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
497
                if ufind.is_connected(op, opt_op) and op not in global_ops:
498 499
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
                                           merged_var)
T
typhoonzero 已提交
500 501

        # append global ops
502
        if global_ops:
Q
qiaolongfei 已提交
503 504 505
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
506
                __append_optimize_op__(glb_op, opt_state_block,
507
                                       grad_to_block_id, None)
T
typhoonzero 已提交
508

509 510 511 512
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
513
            table_opt_block = self._create_table_optimize_block(
514
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
515
            prefetch_block = self._create_prefetch_block(
516
                pserver_index, pserver_program, table_opt_block)
517 518 519 520 521 522 523 524 525

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
526 527 528 529 530 531
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
532
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
533
                "endpoint": endpoint,
534
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
535 536
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
537
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
538
            })
539

T
typhoonzero 已提交
540 541 542 543 544 545 546 547 548 549
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
550
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
564
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

597 598
    # ====================== private transpiler functions =====================

599
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
600 601
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
648 649
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
650
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
651 652
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
668
                    delete_ops(program.global_block(), [op])
669 670 671
                    # break for loop
                    break

Y
Yancey1989 已提交
672
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
673 674 675
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
676
        table_grad_name = grad_var_name(self.table_name)
677 678 679 680 681 682 683 684 685 686
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
687
                    outputs={"Out": self.trainer_side_table_grad_list})
688 689 690
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
691
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
692 693 694 695 696 697
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
718
            type="lookup_sparse_table",
719 720 721 722 723 724 725 726 727 728 729
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
730
                                     pre_block_idx, grad_to_block_id):
731 732
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
733 734 735 736 737 738 739 740
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
741 742 743
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
744
            self.origin_program.global_block().vars[grad_var_name(
745
                self.table_name)])
746 747 748 749 750 751

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
752
        table_opt_block = pserver_program.create_block(pre_block_idx)
753 754 755
        # only support sgd now
        assert table_opt_op.type == "sgd"

756 757 758
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
759
            pserver_side_table_grad_list = [
760 761 762 763 764 765 766 767 768
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

769
            # append sum op for pserver_side_table_grad_list
770 771
            table_opt_block.append_op(
                type="sum",
772
                inputs={"X": pserver_side_table_grad_list},
773
                outputs={"Out": [grad_var]})
774 775
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
776
            origin_grad_name = grad_var.name
777 778
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
779 780
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
781
                                 " grad_var:" + grad_var.name)
782 783
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

799 800 801
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

802 803
        return table_opt_block

T
typhoonzero 已提交
804 805 806 807 808
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
809
        Create vars for each split.
T
typhoonzero 已提交
810 811
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
812 813 814 815
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
816 817
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
818
                from original var name to each var split.
T
typhoonzero 已提交
819
        """
820 821

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
822
        block_map = dict()
823

T
typhoonzero 已提交
824
        var_mapping = dict()
T
typhoonzero 已提交
825 826 827 828 829 830
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
831
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
832
            if len(splited) == 1:
833
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
834 835 836 837 838 839 840 841
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
842
                continue
T
typhoonzero 已提交
843 844

            var_mapping[varname] = []
T
typhoonzero 已提交
845 846 847 848
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
849

T
typhoonzero 已提交
850
            for i, block in enumerate(splited):
T
typhoonzero 已提交
851
                size = block[1]
T
typhoonzero 已提交
852 853 854 855
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
856
                new_var_name = ""
857
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
858 859 860 861 862
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
863
                var = program.global_block().create_var(
T
typhoonzero 已提交
864 865
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
866
                    dtype=orig_var.dtype,
867
                    type=orig_var.type,
T
typhoonzero 已提交
868
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
869
                var_mapping[varname].append(var)
T
typhoonzero 已提交
870
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
871
        return var_mapping
T
done  
typhoonzero 已提交
872

873 874 875 876 877 878 879 880 881 882 883
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
884 885 886 887 888 889 890
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
891
            persistable=persistable)
T
done  
typhoonzero 已提交
892

Y
Yancey1989 已提交
893
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
918

T
typhoonzero 已提交
919 920 921 922
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
923
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

946 947
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
948
        orig_var_name = ""
949 950 951 952 953 954 955 956 957 958
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
959
        else:
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
987
        else:
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var})
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1011

1012
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1013
                            grad_to_block_id, origin_program, merged_var):
1014
        program = optimize_block.program
T
typhoonzero 已提交
1015
        pserver_block = program.global_block()
T
typhoonzero 已提交
1016
        new_inputs = dict()
T
typhoonzero 已提交
1017 1018
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1019
        for key in opt_op.input_names:
T
typhoonzero 已提交
1020 1021 1022 1023 1024 1025
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1026
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1027 1028 1029 1030
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1031
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1032
                    name=param_block.name,
T
typhoonzero 已提交
1033
                    persistable=True,
T
typhoonzero 已提交
1034 1035 1036
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1037
            elif key == "LearningRate":
1038
                # learning rate variable has already be created by non-optimize op,
1039
                # don't create it once again.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1051

T
typhoonzero 已提交
1052
        for key in opt_op.input_names:
1053 1054
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1055
                continue
1056
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1057 1058 1059 1060
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1061
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1062 1063 1064 1065 1066
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1067

1068
        # change output's ParamOut variable
1069 1070
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1071
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1072

1073
        optimize_block.append_op(
T
typhoonzero 已提交
1074 1075
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1076
            outputs=outputs,
T
typhoonzero 已提交
1077 1078
            attrs=opt_op.attrs)

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op, endpoint):
1089
        program = optimize_block.program
1090
        # Append the ops for parameters that do not need to be optimized/updated
1091 1092
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1093
        for key, varlist in inputs.iteritems():
1094 1095
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1096
            for var in varlist:
1097 1098 1099 1100 1101 1102 1103
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1104
                    program.global_block().create_var(
T
typhoonzero 已提交
1105 1106 1107 1108 1109
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1110 1111
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1112
        for key, varlist in outputs.iteritems():
1113 1114 1115
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1116 1117 1118 1119 1120 1121
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1122

1123
        optimize_block.append_op(
T
typhoonzero 已提交
1124
            type=opt_op.type,
T
typhoonzero 已提交
1125 1126
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1127 1128
            attrs=opt_op.attrs)

1129 1130 1131 1132
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1146 1147
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1148
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1149
        op2_output_names = op2.desc.output_arg_names()
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1178 1179
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1180 1181 1182 1183 1184 1185 1186
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1187
        if op.input("Param")[0] in param_names:
1188 1189 1190
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1191
                param = op.input("Param")[0]
T
typhoonzero 已提交
1192
                if same_or_split_var(n, param) and n != param:
1193 1194 1195
                    return True
            return False

T
typhoonzero 已提交
1196
    def _get_input_map_from_op(self, varmap, op):
1197
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1210
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1221 1222 1223 1224 1225 1226

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1227
            if self._is_optimizer_op(op):
1228 1229 1230 1231
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1232
        block = self.origin_program.global_block()
1233 1234 1235 1236 1237
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1238

1239 1240 1241 1242 1243
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1244
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1245 1246 1247 1248 1249 1250
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1251 1252
                    # we only need to append op for once
                    break
1253
        return lr_ops
Y
Yancey1989 已提交
1254 1255

    def _get_optimize_pass(self):
1256 1257 1258 1259 1260 1261
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1262 1263 1264
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1265
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1266
        for op in block.ops:
1267
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1268
                opt_ops.append(op)
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
1280 1281
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1282 1283 1284
            else:
                pass
        return opt_ops, params_grads
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False