test_kron_op.py 7.4 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

F
Feiyu Chan 已提交
17 18 19 20 21 22 23 24 25 26 27
import numpy as np
from op_test import OpTest

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg


class TestKronOp(OpTest):
    def setUp(self):
        self.op_type = "kron"
28
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
29 30 31 32 33 34 35 36 37 38 39
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}

    def _init_dtype(self):
        return "float64"

    def test_check_output(self):
40
        self.check_output(check_eager=True)
F
Feiyu Chan 已提交
41 42

    def test_check_grad(self):
43
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
Feiyu Chan 已提交
44

45
    def test_check_grad_ignore_x(self):
46
        self.check_grad(['Y'], 'Out', no_grad_set=set('X'), check_eager=True)
47 48

    def test_check_grad_ignore_y(self):
49
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'), check_eager=True)
50

F
Feiyu Chan 已提交
51 52 53 54

class TestKronOp2(TestKronOp):
    def setUp(self):
        self.op_type = "kron"
55
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
56 57 58 59 60 61 62 63 64 65 66
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronOp3(TestKronOp):
    def setUp(self):
        self.op_type = "kron"
67
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronLayer(unittest.TestCase):
    def test_case(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        place = fluid.CPUPlace()
        with dg.guard(place):
            a_var = dg.to_variable(a)
            b_var = dg.to_variable(b)
            c_var = paddle.kron(a_var, b_var)
            np.testing.assert_allclose(c_var.numpy(), np.kron(a, b))

    def test_case_with_output(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                a_var = fluid.data("a", [-1, -1], dtype="float64")
                b_var = fluid.data("b", [-1, -1], dtype="float64")
W
WuHaobo 已提交
98
                out_var = paddle.kron(a_var, b_var)
F
Feiyu Chan 已提交
99 100 101 102

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
103
        (c,) = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var])
F
Feiyu Chan 已提交
104 105 106
        np.testing.assert_allclose(c, np.kron(a, b))


107 108 109
class TestComplexKronOp(OpTest):
    def setUp(self):
        self.op_type = "kron"
110
        self.python_api = paddle.kron
111 112 113 114 115 116 117 118 119
        self.x_shape = np.array([10, 10])
        self.y_shape = np.array([3, 35])
        self.out_shape = self.x_shape * self.y_shape
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
120
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
121 122 123 124 125 126 127 128 129
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(
130 131
            self.dtype
        ) + 1j * np.random.random(self.x_shape).astype(self.dtype)
132
        self.y = np.random.random(self.y_shape).astype(
133 134
            self.dtype
        ) + 1j * np.random.random(self.y_shape).astype(self.dtype)
135 136 137
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
138 139 140
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1j * np.ones(
            self.out_shape, self.dtype
        )
141 142 143 144
        self.grad_x = self.get_grad_x_by_numpy()
        self.grad_y = self.get_grad_y_by_numpy()

    def get_grad_x_by_numpy(self):
145
        grad_x = np.zeros(self.x_shape, np.complex128)
146 147 148 149 150 151 152
        for x_i in range(self.x_shape[0]):
            for x_j in range(self.x_shape[1]):
                for i in range(self.y_shape[0]):
                    for j in range(self.y_shape[1]):
                        idx_i = x_i * self.y_shape[0] + i
                        idx_j = x_j * self.y_shape[1] + j
                        grad_x[x_i][x_j] += self.grad_out[idx_i][
153 154
                            idx_j
                        ] * np.conj(self.y[i][j])
155 156 157
        return grad_x

    def get_grad_y_by_numpy(self):
158
        grad_y = np.zeros(self.y_shape, np.complex128)
159 160 161 162 163 164 165
        for y_i in range(self.y_shape[0]):
            for y_j in range(self.y_shape[1]):
                for x_i in range(self.x_shape[0]):
                    for x_j in range(self.x_shape[1]):
                        idx_i = x_i * self.y_shape[0] + y_i
                        idx_j = x_j * self.y_shape[1] + y_j
                        grad_y[y_i][y_j] += self.grad_out[idx_i][
166 167
                            idx_j
                        ] * np.conj(self.x[x_i][x_j])
168 169 170
        return grad_y

    def test_check_output(self):
171
        self.check_output(check_eager=True)
172 173

    def test_check_grad_normal(self):
174 175 176 177 178 179 180
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
181 182

    def test_check_grad_ingore_x(self):
183 184 185 186 187 188 189 190
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
191 192

    def test_check_grad_ingore_y(self):
193 194 195 196 197 198 199 200
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
201 202


C
chentianyu03 已提交
203 204 205 206
class TestKronOpTypePromotion(TestComplexKronOp):
    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(self.dtype)
        self.y = np.random.random(self.y_shape).astype(
207 208
            self.dtype
        ) + 1j * np.random.random(self.y_shape).astype(self.dtype)
C
chentianyu03 已提交
209 210 211
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
212 213 214
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1j * np.ones(
            self.out_shape, self.dtype
        )
C
chentianyu03 已提交
215 216 217 218
        self.grad_x = self.get_grad_x_by_numpy().real
        self.grad_y = self.get_grad_y_by_numpy()


F
Feiyu Chan 已提交
219
if __name__ == '__main__':
220
    paddle.enable_static()
F
Feiyu Chan 已提交
221
    unittest.main()