test_kron_op.py 7.6 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
22
from paddle.fluid.framework import _test_eager_guard
F
Feiyu Chan 已提交
23 24 25 26 27


class TestKronOp(OpTest):
    def setUp(self):
        self.op_type = "kron"
28
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
29 30 31 32 33 34 35 36 37 38 39
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}

    def _init_dtype(self):
        return "float64"

    def test_check_output(self):
40
        self.check_output(check_eager=True)
F
Feiyu Chan 已提交
41 42

    def test_check_grad(self):
43
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
Feiyu Chan 已提交
44

45
    def test_check_grad_ignore_x(self):
46
        self.check_grad(['Y'], 'Out', no_grad_set=set('X'), check_eager=True)
47 48

    def test_check_grad_ignore_y(self):
49
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'), check_eager=True)
50

F
Feiyu Chan 已提交
51 52 53 54

class TestKronOp2(TestKronOp):
    def setUp(self):
        self.op_type = "kron"
55
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
56 57 58 59 60 61 62 63 64 65 66
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronOp3(TestKronOp):
    def setUp(self):
        self.op_type = "kron"
67
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronLayer(unittest.TestCase):
    def test_case(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        place = fluid.CPUPlace()
        with dg.guard(place):
            a_var = dg.to_variable(a)
            b_var = dg.to_variable(b)
            c_var = paddle.kron(a_var, b_var)
            np.testing.assert_allclose(c_var.numpy(), np.kron(a, b))

    def test_case_with_output(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                a_var = fluid.data("a", [-1, -1], dtype="float64")
                b_var = fluid.data("b", [-1, -1], dtype="float64")
W
WuHaobo 已提交
98
                out_var = paddle.kron(a_var, b_var)
F
Feiyu Chan 已提交
99 100 101 102

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
103
        (c,) = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var])
F
Feiyu Chan 已提交
104 105
        np.testing.assert_allclose(c, np.kron(a, b))

106 107 108 109 110
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_case()
            self.test_case_with_output()

F
Feiyu Chan 已提交
111

112 113 114
class TestComplexKronOp(OpTest):
    def setUp(self):
        self.op_type = "kron"
115
        self.python_api = paddle.kron
116 117 118 119 120 121 122 123 124
        self.x_shape = np.array([10, 10])
        self.y_shape = np.array([3, 35])
        self.out_shape = self.x_shape * self.y_shape
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
125
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
126 127 128 129 130 131 132 133 134
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(
135 136
            self.dtype
        ) + 1j * np.random.random(self.x_shape).astype(self.dtype)
137
        self.y = np.random.random(self.y_shape).astype(
138 139
            self.dtype
        ) + 1j * np.random.random(self.y_shape).astype(self.dtype)
140 141 142
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
143 144 145
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1j * np.ones(
            self.out_shape, self.dtype
        )
146 147 148 149
        self.grad_x = self.get_grad_x_by_numpy()
        self.grad_y = self.get_grad_y_by_numpy()

    def get_grad_x_by_numpy(self):
150
        grad_x = np.zeros(self.x_shape, np.complex128)
151 152 153 154 155 156 157
        for x_i in range(self.x_shape[0]):
            for x_j in range(self.x_shape[1]):
                for i in range(self.y_shape[0]):
                    for j in range(self.y_shape[1]):
                        idx_i = x_i * self.y_shape[0] + i
                        idx_j = x_j * self.y_shape[1] + j
                        grad_x[x_i][x_j] += self.grad_out[idx_i][
158 159
                            idx_j
                        ] * np.conj(self.y[i][j])
160 161 162
        return grad_x

    def get_grad_y_by_numpy(self):
163
        grad_y = np.zeros(self.y_shape, np.complex128)
164 165 166 167 168 169 170
        for y_i in range(self.y_shape[0]):
            for y_j in range(self.y_shape[1]):
                for x_i in range(self.x_shape[0]):
                    for x_j in range(self.x_shape[1]):
                        idx_i = x_i * self.y_shape[0] + y_i
                        idx_j = x_j * self.y_shape[1] + y_j
                        grad_y[y_i][y_j] += self.grad_out[idx_i][
171 172
                            idx_j
                        ] * np.conj(self.x[x_i][x_j])
173 174 175
        return grad_y

    def test_check_output(self):
176
        self.check_output(check_eager=True)
177 178

    def test_check_grad_normal(self):
179 180 181 182 183 184 185
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
186 187

    def test_check_grad_ingore_x(self):
188 189 190 191 192 193 194 195
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
196 197

    def test_check_grad_ingore_y(self):
198 199 200 201 202 203 204 205
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
206 207


C
chentianyu03 已提交
208 209 210 211
class TestKronOpTypePromotion(TestComplexKronOp):
    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(self.dtype)
        self.y = np.random.random(self.y_shape).astype(
212 213
            self.dtype
        ) + 1j * np.random.random(self.y_shape).astype(self.dtype)
C
chentianyu03 已提交
214 215 216
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
217 218 219
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1j * np.ones(
            self.out_shape, self.dtype
        )
C
chentianyu03 已提交
220 221 222 223
        self.grad_x = self.get_grad_x_by_numpy().real
        self.grad_y = self.get_grad_y_by_numpy()


F
Feiyu Chan 已提交
224
if __name__ == '__main__':
225
    paddle.enable_static()
F
Feiyu Chan 已提交
226
    unittest.main()