test_kron_op.py 7.6 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
22
from paddle.fluid.framework import _test_eager_guard
F
Feiyu Chan 已提交
23 24 25


class TestKronOp(OpTest):
26

F
Feiyu Chan 已提交
27 28
    def setUp(self):
        self.op_type = "kron"
29
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
30 31 32 33 34 35 36 37 38 39 40
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}

    def _init_dtype(self):
        return "float64"

    def test_check_output(self):
41
        self.check_output(check_eager=True)
F
Feiyu Chan 已提交
42 43

    def test_check_grad(self):
44
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
Feiyu Chan 已提交
45

46
    def test_check_grad_ignore_x(self):
47
        self.check_grad(['Y'], 'Out', no_grad_set=set('X'), check_eager=True)
48 49

    def test_check_grad_ignore_y(self):
50
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'), check_eager=True)
51

F
Feiyu Chan 已提交
52 53

class TestKronOp2(TestKronOp):
54

F
Feiyu Chan 已提交
55 56
    def setUp(self):
        self.op_type = "kron"
57
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
58 59 60 61 62 63 64 65 66
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        y = np.random.uniform(size=(10, 10)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronOp3(TestKronOp):
67

F
Feiyu Chan 已提交
68 69
    def setUp(self):
        self.op_type = "kron"
70
        self.python_api = paddle.kron
F
Feiyu Chan 已提交
71 72 73 74 75 76 77 78 79
        self.dtype = self._init_dtype()
        x = np.random.uniform(size=(10, 10)).astype(self.dtype)
        y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
        out_ref = np.kron(x, y)
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out_ref}


class TestKronLayer(unittest.TestCase):
80

F
Feiyu Chan 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    def test_case(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        place = fluid.CPUPlace()
        with dg.guard(place):
            a_var = dg.to_variable(a)
            b_var = dg.to_variable(b)
            c_var = paddle.kron(a_var, b_var)
            np.testing.assert_allclose(c_var.numpy(), np.kron(a, b))

    def test_case_with_output(self):
        a = np.random.randn(10, 10).astype(np.float64)
        b = np.random.randn(10, 10).astype(np.float64)

        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                a_var = fluid.data("a", [-1, -1], dtype="float64")
                b_var = fluid.data("b", [-1, -1], dtype="float64")
W
WuHaobo 已提交
102
                out_var = paddle.kron(a_var, b_var)
F
Feiyu Chan 已提交
103 104 105 106 107 108 109

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(start)
        c, = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var])
        np.testing.assert_allclose(c, np.kron(a, b))

110 111 112 113 114
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_case()
            self.test_case_with_output()

F
Feiyu Chan 已提交
115

116
class TestComplexKronOp(OpTest):
117

118 119
    def setUp(self):
        self.op_type = "kron"
120
        self.python_api = paddle.kron
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        self.x_shape = np.array([10, 10])
        self.y_shape = np.array([3, 35])
        self.out_shape = self.x_shape * self.y_shape
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(
            self.dtype) + 1J * np.random.random(self.x_shape).astype(self.dtype)
        self.y = np.random.random(self.y_shape).astype(
            self.dtype) + 1J * np.random.random(self.y_shape).astype(self.dtype)
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1J * np.ones(
            self.out_shape, self.dtype)
        self.grad_x = self.get_grad_x_by_numpy()
        self.grad_y = self.get_grad_y_by_numpy()

    def get_grad_x_by_numpy(self):
152
        grad_x = np.zeros(self.x_shape, np.complex128)
153 154 155 156 157 158 159 160 161 162 163
        for x_i in range(self.x_shape[0]):
            for x_j in range(self.x_shape[1]):
                for i in range(self.y_shape[0]):
                    for j in range(self.y_shape[1]):
                        idx_i = x_i * self.y_shape[0] + i
                        idx_j = x_j * self.y_shape[1] + j
                        grad_x[x_i][x_j] += self.grad_out[idx_i][
                            idx_j] * np.conj(self.y[i][j])
        return grad_x

    def get_grad_y_by_numpy(self):
164
        grad_y = np.zeros(self.y_shape, np.complex128)
165 166 167 168 169 170 171 172 173 174 175
        for y_i in range(self.y_shape[0]):
            for y_j in range(self.y_shape[1]):
                for x_i in range(self.x_shape[0]):
                    for x_j in range(self.x_shape[1]):
                        idx_i = x_i * self.y_shape[0] + y_i
                        idx_j = x_j * self.y_shape[1] + y_j
                        grad_y[y_i][y_j] += self.grad_out[idx_i][
                            idx_j] * np.conj(self.x[x_i][x_j])
        return grad_y

    def test_check_output(self):
176
        self.check_output(check_eager=True)
177 178

    def test_check_grad_normal(self):
179 180 181 182 183
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
184 185

    def test_check_grad_ingore_x(self):
186 187 188 189 190 191
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
192 193

    def test_check_grad_ingore_y(self):
194 195 196 197 198 199
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=True)
200 201


C
chentianyu03 已提交
202
class TestKronOpTypePromotion(TestComplexKronOp):
203

C
chentianyu03 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
    def init_input_output(self):
        self.x = np.random.random(self.x_shape).astype(self.dtype)
        self.y = np.random.random(self.y_shape).astype(
            self.dtype) + 1J * np.random.random(self.y_shape).astype(self.dtype)
        self.out = np.kron(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.out_shape, self.dtype) + 1J * np.ones(
            self.out_shape, self.dtype)
        self.grad_x = self.get_grad_x_by_numpy().real
        self.grad_y = self.get_grad_y_by_numpy()


F
Feiyu Chan 已提交
217
if __name__ == '__main__':
218
    paddle.enable_static()
F
Feiyu Chan 已提交
219
    unittest.main()