gradient_accumulator.cc 36.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
16

J
Jiabin Yang 已提交
17 18 19
#include <algorithm>
#include <memory>
#include <utility>
20

21
#include "paddle/fluid/framework/convert_utils.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/framework/selected_rows_utils.h"
J
Jiabin Yang 已提交
24 25
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
26
#include "paddle/fluid/operators/math/selected_rows_functor.h"
27
#include "paddle/fluid/platform/complex.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/platform/device_context.h"
29
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/profiler.h"
31
#include "paddle/pten/kernels/funcs/math_function.h"
H
hong 已提交
32 33 34
#ifdef PADDLE_WITH_XPU
#include "xpu/refactor/math.h"
#endif
35
#ifdef PADDLE_WITH_ASCEND_CL
36
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
37
#endif
F
fwenguang 已提交
38 39 40
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
J
Jiabin Yang 已提交
41 42 43 44

namespace paddle {
namespace imperative {

45 46 47
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
                          bool force_copy) {
  if (!force_copy) {
48
    VLOG(6) << "Just Move Variable when sum gradients within this graph";
49 50 51 52
    *dst = std::move(*src);
    return;
  }

53
  VLOG(6) << "Copy occurs when sum gradients within this graph";
54 55 56 57 58 59 60 61
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
62 63 64
  } else if (src->IsType<pten::SelectedRows>()) {
    auto& src_selected_rows = src->Get<pten::SelectedRows>();
    if (!dst->IsType<pten::SelectedRows>()) {
65 66
      dst->Clear();
    }
67
    auto* dst_selected_rows = dst->GetMutable<pten::SelectedRows>();
68 69 70 71 72 73 74
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
75
        "Only support LoDTensor and SelectedRows for sum gradient"));
76 77 78
  }
}

J
Jiabin Yang 已提交
79 80 81 82 83 84
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

85
  void operator()(const platform::CPUPlace& place) const {
J
Jiabin Yang 已提交
86 87 88 89 90 91
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

H
hong 已提交
92
#ifdef PADDLE_WITH_XPU
93
  void operator()(const platform::XPUPlace& place) const {
94
    using XPUType = typename XPUTypeTrait<T>::Type;
H
hong 已提交
95 96
    platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
97 98 99 100 101 102 103 104
    int r = xpu::add<XPUType>(
        ctx->x_context(), reinterpret_cast<const XPUType*>(x_),
        reinterpret_cast<const XPUType*>(y_), reinterpret_cast<XPUType*>(y_),
        static_cast<int>(numel_));
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU add kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
H
hong 已提交
105 106
  }
#else
107
  void operator()(const platform::XPUPlace& place) const {
108 109 110 111 112
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
H
hong 已提交
113
#endif
114

115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
116
  void operator()(const platform::CUDAPlace& place) const {
J
Jiabin Yang 已提交
117 118 119 120 121 122 123
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
124
  void operator()(const platform::CUDAPlace& place) const {
125
    PADDLE_THROW(platform::errors::PermissionDenied(
126 127 128 129 130 131
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

F
fwenguang 已提交
132
#ifdef PADDLE_WITH_MLU
133
  void operator()(const platform::MLUPlace& place) const {
F
fwenguang 已提交
134 135 136 137 138 139 140
    // TODO(fwg): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
141
  void operator()(const platform::MLUPlace& place) const {
F
fwenguang 已提交
142 143 144 145 146 147 148
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

149
#ifdef PADDLE_WITH_ASCEND_CL
150
  void operator()(const platform::NPUPlace& place) const {
151 152 153 154 155 156 157
    // TODO(zhiqiu): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
158
  void operator()(const platform::NPUPlace& place) const {
159
    PADDLE_THROW(platform::errors::PermissionDenied(
160 161 162
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
163 164 165
  }
#endif

166
  void operator()(const platform::NPUPinnedPlace& place) const {
167 168 169 170 171
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
J
Jiabin Yang 已提交
172
  // there is NO blas in CUDAPinnedPlace
173
  void operator()(const platform::CUDAPinnedPlace& place) const {
174 175 176 177
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
178
  }
J
jianghaicheng 已提交
179
  // there is NO support in IPUPlace
180
  void operator()(const platform::IPUPlace& place) const {
J
jianghaicheng 已提交
181 182 183 184 185
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
186 187 188 189 190 191
  void operator()(const platform::CustomPlace& place) const {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
J
Jiabin Yang 已提交
192 193 194 195

 private:
  int64_t numel_;
  const T* x_;
196
  mutable T* y_;
J
Jiabin Yang 已提交
197 198
};

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifdef PADDLE_WITH_XPU
template <typename T>
void XPUTensorAddFunctor(const platform::Place& place,
                         const framework::Tensor& src, framework::Tensor* dst) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  const XPUType* x = reinterpret_cast<const XPUType*>(src.data<T>());
  XPUType* y = reinterpret_cast<XPUType*>(dst->mutable_data<T>(place));
  int r = xpu::add<XPUType>(ctx->x_context(), x, y, y,
                            static_cast<int>(src.numel()));
  PADDLE_ENFORCE_EQ(
      r, XPU_SUCCESS,
      platform::errors::External("XPU add kernel return wrong value[%d %s]", r,
                                 XPUAPIErrorMsg[r]));
}
#endif

217 218 219 220 221 222
template <typename DeviceContext, typename T>
void TensorAddImpl(const framework::Tensor& src, framework::Tensor* dst,
                   const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  paddle::platform::DeviceContext* ctx = pool.Get(place);
  auto dev_ctx = dynamic_cast<DeviceContext*>(ctx);
223
  pten::funcs::ElementwiseAddTo<DeviceContext, T> func;
224 225 226
  func(dev_ctx, src, dst);
}

227 228 229
template <typename TType>
TType* GetInnerMutableTensor(framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<TType>();
230 231 232
  return dst_tensor;
}

233 234 235
template <typename TType>
TType* GetInnerMutableTensor(paddle::experimental::Tensor* dst) {
  auto* dst_tensor = static_cast<TType*>(dst->impl().get());
236 237 238
  return dst_tensor;
}

239 240 241
template <typename TType>
const TType& GetInnerTensor(const framework::Variable& src) {
  return src.Get<TType>();
242 243
}

244 245 246 247 248 249 250 251 252
template <typename TType>
TType& GetInnerTensor(const paddle::experimental::Tensor& src) {
  PADDLE_ENFORCE_EQ(
      src.initialized(), true,
      platform::errors::Fatal("We only add tensor with value if a tensor is "
                              "NOT INITILIZED, it should just move instead of "
                              "calling this method."));
  auto* src_tensor = static_cast<TType*>(src.impl().get());
  return *src_tensor;
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
template <typename TType>
TType* GetEmptyInnerTensor(paddle::experimental::Tensor* dst) {
  PADDLE_ENFORCE_EQ(
      dst->defined(), false,
      platform::errors::Fatal(
          "The underlying Tensor implementation should be nullptr"));
  dst->set_impl(std::make_shared<TType>());
  auto* dst_tensor = static_cast<TType*>(dst->impl().get());
  return dst_tensor;
}

template <typename TType>
TType* GetEmptyInnerTensor(paddle::imperative::VariableWrapper* dst) {
  auto* dst_tensor = dst->MutableVar()->GetMutable<TType>();
  return dst_tensor;
}

272 273
template <typename VarType>
void TensorAdd(const VarType& src, VarType* dst) {
274 275
  pten::DenseTensor* dst_tensor = GetInnerMutableTensor<pten::DenseTensor>(dst);
  const pten::DenseTensor& src_tensor = GetInnerTensor<pten::DenseTensor>(src);
J
Jiabin Yang 已提交
276 277 278 279 280 281 282 283 284

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

285 286 287 288 289 290 291
  PADDLE_ENFORCE_EQ(
      dst_tensor->numel(), numel,
      platform::errors::PreconditionNotMet(
          "The number of elements of source tensor and destination tensor "
          "should be equal, but got the number of elements of source tensor is "
          "%zu and the number of elements of destination tensor is %zu.",
          numel, dst_tensor->numel()));
J
Jiabin Yang 已提交
292

293
  auto data_type = framework::TransToProtoVarType(src_tensor.dtype());
J
Jiabin Yang 已提交
294 295
  auto place = src_tensor.place();

296 297
  PADDLE_ENFORCE_EQ(framework::TransToProtoVarType(dst_tensor->dtype()),
                    data_type,
298 299 300 301 302
                    platform::errors::PreconditionNotMet(
                        "The data type of source tensor and destination tensor "
                        "should be equal, Otherwise, the calculation results "
                        "will be incorrect."));

303 304 305 306
  // if src and dst are in different place, copy dst to src's place
  if (dst_tensor->place() != place) {
    paddle::framework::TensorCopySync(*dst_tensor, place, dst_tensor);
  }
307
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
308 309 310 311
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
        numel, src_tensor.data<cpp_type>(),                          \
        dst_tensor->mutable_data<cpp_type>(place));                  \
312
    platform::VisitPlace(place, func);                               \
J
Jiabin Yang 已提交
313 314 315
    return;                                                          \
  }

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::NPUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type == framework::DataTypeTrait<double>::DataType()) {
      dst_tensor->mutable_data<double>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    const auto& runner = operators::NpuOpRunner(
        "Add", {*dst_tensor, src_tensor}, {*dst_tensor}, {});
    runner.Run(dev_ctx->stream());
    return;
  }
#endif
340 341 342 343 344 345 346 347
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (platform::is_custom_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Gradient accumulation of data type (%s) on place (%s) is not "
        "supported in imperative mode",
        framework::DataTypeToString(data_type), place));
  }
#endif
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place)) {
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      XPUTensorAddFunctor<float>(place, src_tensor, dst_tensor);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      XPUTensorAddFunctor<platform::float16>(place, src_tensor, dst_tensor);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    return;
  }
#endif

F
fwenguang 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::MLUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    static const float alpha = 1.f;
    static const float beta = 1.f;
    operators::MLUCnnlTensorDesc src_tensor_desc(src_tensor);
    operators::MLUCnnlTensorDesc dst_tensor_desc(*dst_tensor);
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignAdd(
        dev_ctx->cnnl_handle(), static_cast<void*>(&alpha),
        src_tensor_desc.get(), operators::GetBasePtr(&src_tensor), nullptr, 0,
        static_cast<void*>(&beta), dst_tensor_desc.get(),
        operators::GetBasePtr(dst_tensor)));
    return;
  }
#endif

394
  PADDLE_TENSOR_ADD(float);
395

H
hong 已提交
396 397
#ifndef PADDLE_WITH_XPU
  // NOTE(phlrain): xpu only support float
398
  PADDLE_TENSOR_ADD(double);
399 400
  // NOTE(chenweihang): only support complex grad tensor accumulated,
  // support selected rows if needed in the future
401 402
  PADDLE_TENSOR_ADD(platform::complex<float>);
  PADDLE_TENSOR_ADD(platform::complex<double>);
H
hong 已提交
403
#endif
J
Jiabin Yang 已提交
404

405
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
406

407 408
  if (data_type == framework::proto::VarType::FP16) {
    if (platform::is_gpu_place(place)) {
409
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
      return TensorAddImpl<platform::CUDADeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
#endif
    } else if (platform::is_cpu_place(place)) {
      return TensorAddImpl<platform::CPUDeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
    }
  }
  PADDLE_THROW(platform::errors::Unimplemented(
      "Gradient accumulation of data type (%s) on place (%s) is not "
      "supported in imperative mode",
      framework::DataTypeToString(data_type), place));
J
Jiabin Yang 已提交
427 428
}

429 430
template void TensorAdd<framework::Variable>(const framework::Variable& src,
                                             framework::Variable* dst);
431 432
template void TensorAdd<paddle::experimental::Tensor>(
    const paddle::experimental::Tensor& src, paddle::experimental::Tensor* dst);
433

434 435 436 437 438
template <typename VarType>
void SelectedRowsAddToTensor(const VarType& src, VarType* dst) {
  pten::DenseTensor* dst_tensor = GetInnerMutableTensor<pten::DenseTensor>(dst);
  const pten::SelectedRows& src_selected_rows =
      GetInnerTensor<pten::SelectedRows>(src);
439
  auto place = dst_tensor->place();
440 441
  auto data_type =
      framework::TransToProtoVarType(src_selected_rows.value().dtype());
442 443 444 445 446 447 448 449 450 451 452 453
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,      \
            dst_tensor);                                                     \
    return;                                                                  \
  }

454
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
455 456 457 458 459 460 461
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
462
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
463 464 465 466 467 468 469 470 471 472
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

473 474 475 476 477 478 479 480 481 482 483 484 485
template void SelectedRowsAddToTensor(const framework::Variable& src,
                                      framework::Variable* dst);
template void SelectedRowsAddToTensor(const paddle::experimental::Tensor& src,
                                      paddle::experimental::Tensor* dst);

template <typename VarType>
void SelectedRowsAddTensor(const VarType& src_selected_rows_var,
                           const VarType& src_tensor_var,
                           VarType* dst_tensor_var) {
  const pten::SelectedRows& src_selected_rows =
      GetInnerTensor<pten::SelectedRows>(src_selected_rows_var);
  const pten::DenseTensor& src_tensor =
      GetInnerTensor<pten::DenseTensor>(src_tensor_var);
486
  const auto& place = src_tensor.place();
487
  auto data_type = framework::TransToProtoVarType(src_tensor.dtype());
488 489
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

490 491
  pten::DenseTensor* dst_tensor =
      GetInnerMutableTensor<pten::DenseTensor>(dst_tensor_var);
492
  dst_tensor->Resize(src_tensor.dims());
493 494
  dst_tensor->mutable_data(place, src_tensor.dtype());

495 496 497 498 499 500 501 502 503
#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,    \
            src_tensor, dst_tensor);                                       \
    return;                                                                \
  }

504
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
505 506 507 508 509 510 511
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
512
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
513 514 515 516 517 518 519 520 521 522
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

523 524 525 526 527 528 529 530 531 532 533 534
template void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var);
template void SelectedRowsAddTensor(
    const paddle::experimental::Tensor& src_selected_rows_var,
    const paddle::experimental::Tensor& src_tensor_var,
    paddle::experimental::Tensor* dst_tensor_var);

// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
535 536 537 538 539 540 541 542
template <typename ReturnVarType, typename VarType>
std::shared_ptr<ReturnVarType> SelectedRowsMerge(const VarType& src1,
                                                 const VarType& src2) {
  const pten::SelectedRows& src_selected_rows1 =
      GetInnerTensor<pten::SelectedRows>(src1);
  const pten::SelectedRows& src_selected_rows2 =
      GetInnerTensor<pten::SelectedRows>(src2);

543
  auto place = src_selected_rows1.value().place();
544 545
  auto data_type =
      framework::TransToProtoVarType(src_selected_rows1.value().dtype());
546 547
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

548
  std::vector<const pten::SelectedRows*> src_selected_rows;
549 550
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
551 552 553 554

  auto dst_var = std::make_shared<ReturnVarType>("Temp");
  pten::SelectedRows* dst_selected_rows =
      GetEmptyInnerTensor<pten::SelectedRows>(dst_var.get());
555 556 557 558 559 560 561 562 563 564 565

#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)                  \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {      \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);           \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type>    \
        merge_add;                                                        \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
              dst_selected_rows);                                         \
    return dst_var;                                                       \
  }

566
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
567 568 569 570 571 572 573
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
574
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
575 576 577 578 579 580 581 582 583
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD
  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

584 585 586 587 588 589
template std::shared_ptr<paddle::experimental::Tensor> SelectedRowsMerge(
    const paddle::experimental::Tensor& src1,
    const paddle::experimental::Tensor& src2);
template std::shared_ptr<paddle::imperative::VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2);

590
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
591
                        VariableWrapper* dst_var, bool unchange_input) {
592
  auto& src = var->Var();
593
  auto* dst = dst_var->MutableVar();
594 595
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
596
      TensorAdd<framework::Variable>(src, dst);
597
    } else if (src.IsType<pten::SelectedRows>()) {
598 599 600 601 602 603 604 605
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
606 607 608 609 610 611 612 613 614
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
615
    } else if (src.IsType<pten::SelectedRows>()) {
616
      auto temp = SelectedRowsMerge<VariableWrapper>(src, *dst);
617 618 619 620 621 622 623 624 625
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

626 627
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
628 629 630
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
631 632
  } else if (var->Var().IsType<pten::SelectedRows>()) {
    place = var->Var().Get<pten::SelectedRows>().place();
633 634 635 636 637 638 639
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

640 641
void GradientAccumulator::AccumulateGrad() {
  /**
642 643
   * If the leaf gradient has been calculated done, the inner_var_
   * should be added to the var_.
644 645 646 647 648 649 650 651 652 653
   */
  if (!var_->IsLeafGrad() || !SumGradCompleted() || !HasInnerVar()) {
    return;
  }
  PADDLE_ENFORCE_EQ(HasInnerVar(), true,
                    platform::errors::InvalidArgument(
                        "Leaf tensor should have inner var to store results of "
                        "this auto-grad"));
  PADDLE_ENFORCE_EQ(inner_var_->Var().IsInitialized(), true,
                    platform::errors::InvalidArgument(
654
                        "Interior var of Leaf tensor should be initialized."));
655 656 657
  auto* src = inner_var_->MutableVar();
  auto* dst = var_->MutableVar();
  if (!var_->IsEmpty()) {
658 659 660
    VLOG(6) << "Leaf Var(" << var_->Name()
            << ")'s Gradient has been initizlized, will accumulate on "
               "previous gradient.";
661 662
    if (dst->IsType<framework::LoDTensor>()) {
      if (src->IsType<framework::LoDTensor>()) {
663
        TensorAdd<framework::Variable>(*src, dst);
664
      } else if (src->IsType<pten::SelectedRows>()) {
665 666
        SelectedRowsAddToTensor(*src, dst);
      }
667
    } else if (dst->IsType<pten::SelectedRows>()) {
668 669 670
      if (src->IsType<framework::LoDTensor>()) {
        SelectedRowsAddToTensor(*dst, src);
        *dst = std::move(*src);
671
      } else if (src->IsType<pten::SelectedRows>()) {
672
        auto temp = SelectedRowsMerge<VariableWrapper>(*src, *dst);
673 674 675 676 677 678 679
        *dst = std::move(*(temp->MutableVar()));
      }
    } else {
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Only support LoDTensor and SelectedRows for gradient var"));
    }
  } else {
680 681 682
    VLOG(6)
        << "Leaf Var(" << var_->Name()
        << ")'s Gradient has not been initialized, not accumulate. Just move";
683 684 685
    *(dst) = std::move(*src);
    var_->SetType(inner_var_->Type());
    var_->SetDataType(inner_var_->DataType());
686
    var_->SetIsEmpty(false);
687 688 689 690
  }
  inner_var_.reset();
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
void GradientAccumulator::CallGradientHooks() {
  PADDLE_ENFORCE_EQ(var_->IsLeafGrad(), true,
                    platform::errors::Unavailable(
                        "Only leaf gradient Tensor can deal with by gradient "
                        "hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(
      SumGradCompleted(), true,
      platform::errors::PreconditionNotMet(
          "Only can call gradient hooks after sum gradient completed."));
  PADDLE_ENFORCE_EQ(
      HasInnerVar(), true,
      platform::errors::PreconditionNotMet(
          "Leaf Tensor's inner var is nullptr when call gradient hook."));
  PADDLE_ENFORCE_EQ(
      inner_var_->Var().IsInitialized(), true,
      platform::errors::PreconditionNotMet("Leaf Tensor's inner var "
                                           "is not initialized when "
                                           "call gradient hook."));
709 710
  if (var_->HasVariableWrapperHook()) {
    VLOG(3) << "Call " << var_->GetVariableWrapperHooks().size()
711 712 713 714
            << " hooks of leaf gradient accumulator's inner var `"
            << var_->Name() << "`.";
    auto tmp_var = inner_var_;
    VLOG(3) << "Input var " << var_->Name() << "'s hook size - "
715 716
            << var_->GetVariableWrapperHooks().size();
    for (const auto& hook_pair : var_->GetVariableWrapperHooks()) {
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
      tmp_var = (*hook_pair.second)(tmp_var);
    }
    inner_var_ = tmp_var;
  }
}

void GradientAccumulator::CallReduceHooks() {
  PADDLE_ENFORCE_EQ(
      var_->IsLeafGrad(), true,
      platform::errors::Unavailable("Only leaf gradient Tensor can deal with "
                                    "by reduce hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(SumGradCompleted(), true,
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the gradient "
                        "summation is completed in current batch."));
  PADDLE_ENFORCE_EQ(HasInnerVar(), false,
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the "
                        "gradient accumulation is completed in "
                        "current batch or across batchs."));
737 738
  if (var_->HasVoidHook()) {
    for (const auto& hook : var_->GetVoidHooks()) {
739
      VLOG(3) << "call gradient accumulator backward hooks.";
740
      (*hook)();
741 742 743 744
    }
  }
}

745 746
void EagerGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                       size_t trace_id, bool unchange_input) {
747 748 749 750 751 752 753 754
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

755
  auto* dst_var = Var();
756
  platform::Place place = GetPlaceOfVar(var);
757 758 759
  if (!dst_var->OverridedStopGradient()) {
    if (CurCnt() == 0) {
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input);
760
    } else {
761 762 763
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
      VariableWrapperAdd(var, dst_var, unchange_input);
764
    }
J
Jiabin Yang 已提交
765
  } else {
766 767 768
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << dst_var->Name() << " as zero ";
769
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
770 771 772 773
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
774 775
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
776 777
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
778
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
779
      } else {
780 781
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
782 783
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
784
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
785
      }
786
    }
J
Jiabin Yang 已提交
787
  }
788

789 790 791 792
  // Type may be changed after OP run, such as VarTypeInference
  // so synchronous VariableWrapper with Variable.
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
793
  } else if (dst_var->Var().IsType<pten::SelectedRows>()) {
794
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
795
  }
796

797
  // Increase curent count
798
  IncreaseCurCnt();
J
Jiabin Yang 已提交
799 800
}

801 802 803
void SortedGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                        size_t trace_id, bool unchange_input) {
  auto* dst_var = Var();
804
  platform::Place place = GetPlaceOfVar(var);
805
  if (!dst_var->OverridedStopGradient()) {
806
    if (ref_cnt_ == 1) {
807
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(),
808
                    unchange_input || var->HasGradNode());
809 810 811 812 813
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

814
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
815 816 817 818 819

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

820 821
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
822 823 824 825 826 827 828 829 830 831
      std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
832

833
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
834
      if (paddle::platform::is_gpu_place(place)) {
835
        // sum selected rows firstly
836
        for (auto& var_info : tmp_grad_vars_) {
837
          if (!var_info.var->Var().IsType<pten::SelectedRows>()) {
838
            continue;
839
          }
840

841 842
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
843 844
                          var_info.unchange_input);
          } else {
845
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
846
          }
847 848

          var_info.var = nullptr;
849 850
          // Increase count
          IncreaseCurCnt();
851 852 853 854 855 856 857 858 859 860
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
                            true, platform::errors::PermissionDenied(
                                      "Gradient var must be LoDTensor"));
861 862
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
863 864
                          var_info.unchange_input);
          } else {
865
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
866
          }
867 868

          var_info.var = nullptr;
869 870
          // Increase count
          IncreaseCurCnt();
871 872 873
        }
      } else {
#endif
874 875 876 877 878 879
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }
          PADDLE_ENFORCE_EQ(
              var_info.var->Var().IsType<framework::LoDTensor>() ||
880
                  var_info.var->Var().IsType<pten::SelectedRows>(),
881 882 883 884 885 886 887 888 889 890 891 892
              true, platform::errors::PermissionDenied("The type of Gradient "
                                                       "var must be LoDTensor "
                                                       "or SelectedRows"));
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
          }
          var_info.var = nullptr;
          // Increase count
          IncreaseCurCnt();
893
        }
894
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
895
      }
896
#endif
897
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
898
    }
899
  } else {
900 901
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
902 903
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
904 905 906 907
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
908 909
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
910 911
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
912
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
913
      } else {
914 915
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
916 917
        tensor->mutable_data(place,
                             framework::TransToPtenDataType(var->DataType()));
918
        pten::funcs::set_constant(*dev_ctx, tensor, 0.0);
919
      }
J
Jiabin Yang 已提交
920
    }
921
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
922 923
    tmp_grad_vars_.clear();
  }
924

925 926
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
927
  } else if (dst_var->Var().IsType<pten::SelectedRows>()) {
928
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
929
  }
J
Jiabin Yang 已提交
930 931 932 933
}

}  // namespace imperative
}  // namespace paddle